On the divergence of two subseries $\ldots$] {on the divergence of two subseries of $\sum\frac{1}{p}$, and theorems of de La Vall\'{e}e Poussin and Landau-Walfis

Resumen

Let $K=Q(\sqrt{d})$ be a quadratic field with discriminant $d$. It is shown that $\sum\limits_{(\frac{d}{p})=+1,_{p~ prime}}\frac{1}{p}$ and $\sum\limits_{(\frac{d}{q})=-1,_{q~ prime}}\frac{1}{q}$ are both divergent. Two different approaches are given to show the divergence: one using the Dedekind Zeta function and the other by Tauberian methods. It is shown that these two divergences are equivalent. It is shown that the divergence is equivalent to $L_{d}(1)\neq 0$(de la Vall\'{e}e Poussin's Theorem).We prove that the series $\sum\limits_{(\frac{d}{p})=+1,_{p~ prime}}\frac{1}{p^{s}}$ and $\sum\limits_{(\frac{d}{q})=-1,_{q~ prime}}\frac{1}{q^{s}}$ have singularities on all the imaginary axis(analogue of Landau-Walfisz theorem)

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

G. Sudhaamsh Mohan Reddy, ICFAI Foundation for Higher Education

Assistant Professor

Faculty of Science and Technology

Citas

J. Andrade, Hilbert-Polya Conjecture,Zeta Functions and Bosnic Quantum Field Theorees, International Journal of Modern Physics A, 28, (2013). DOI: https://doi.org/10.1142/S0217751X13500723

Tom Apostol, Introduction to Analytic Number Theory, Springer, (1976). DOI: https://doi.org/10.1007/978-1-4757-5579-4

L. J. Goldstein, Analytic Number Theory, Prentice Hall, (1971).

G. Hardy, ”Ramanujan: 12 Lectures suggested by his life and work”, Chelsea, (1959).

E. Hlawka, J.Schoipengeir, R.Taschner Geometric and Analytic Number Theory, Springer, (1992). DOI: https://doi.org/10.1007/978-3-642-75306-0

K. Ireland and M Rosen, A Classical Introduction to Modren Number Theory, Springer, (1982). DOI: https://doi.org/10.1007/978-1-4757-1779-2

N. Kurokawa, On certain Euler products, Acta Mathematica, Vol XLVIII, 49-52, (1987). DOI: https://doi.org/10.4064/aa-48-1-49-52

J. Serre, Course in Arithmetic, Springer, (1973). DOI: https://doi.org/10.1007/978-1-4684-9884-4

S. Srinivas Rau and B.Uma, Squarefree ideals in Quadratic fields and the Dedekind Zeta function, Vikram Math Journal Vol 13, 35-44,(1993).

TIFR Pamphlet 4, Algebraic Number Theory, (1966).

G. Sudhaamsh Mohan Reddy, SS Rau„ B Uma A remark on Hardy-Ramanujan’s approximation of divisor functions, International Journal of Pure and Applied Mathematics, 118 (4), 997-999, (2018).

G. Sudhaamsh Mohan Reddy, SS Rau, B Uma, Some Dirichlet Series and Means of Their Coefficients,Southeast Asian Bulletin of Mathematics 40 (4), 585-591, (2016).

G. Sudhaamsh Mohan Reddy, SS Rau, B Uma, Some arithmetic functions and their means,International Journal of Pure and Applied Mathematics 119 (2), 369-374, (2018).

G. Sudhaamsh Mohan Reddy, SS Rau, B Uma, A Bertrand Postulate for a subclass of primes, Boletim da Sociedade Paranaense de Matematica 31 (2), 109-111, (2013). DOI: https://doi.org/10.5269/bspm.v31i2.15138

G. Sudhaamsh Mohan Reddy, SS Rau, B Uma, Converegence of a series leading to an analogue of Ramanujan’s assertion on squarefree integers, Boletim da Sociedade Paranaense de Matem´atica 38 (2), 83-87, (2020). DOI: https://doi.org/10.5269/bspm.v38i2.34878

Titchmarsh E., The theory of the Zeta Function, Oxford Univ Press, (1951).

Publicado
2022-12-24
Sección
Articles