On $S_{\alpha }^{\beta }(\theta ,A,F)-$convergence and strong $N_{\alpha }^{\beta }(\theta ,A,F)-$convergence
Résumé
In this paper, we introduce strong $N_{\alpha }^{\beta }(\theta ,A,F)-$convergence and $S_{\alpha }^{\beta }(\theta ,A,F)-$% convergence with respect to a sequence of modulus functions and give some connections between strongly $N_{\alpha }^{\beta }(\theta ,A,F)-$convergent sequences and $S_{\alpha }^{\beta }(\theta ,A,F)-$convergent sequences for $% 0<\alpha \leq \beta \leq 1$.
Téléchargements
Références
V. K. Bhardwaj and S. Dhawan, Density by moduli and lacunary statistical convergence. Abstr. Appl. Anal., Art. ID 9365037, 11 pp. (2016). DOI: https://doi.org/10.1155/2016/9365037
T. Bilgin, Lacunary strong A−convergence with respect to a modulus. Studia Univ. Babe¸s-Bolyai Math. 46(4), 39-46, (2001).
T. Bilgin, Lacunary strong A−convergence with respect to a sequence of modulus functions. Appl. Math. Comput. 151(3), 595-600, (2004). DOI: https://doi.org/10.1016/S0096-3003(03)00364-3
H. Cakallı, Lacunary statistical convergence in topological groups. Indian J. Pure Appl. Math. 26(2), 113-119, (1995).
H. Cakallı, A study on statistical convergence. Funct. Anal. Approx. Comput. 1(2), 19-24, (2009).
H. Cakalli, A new approach to statistically quasi Cauchy sequences. Maltepe Journal of Mathematics 1(1), 1-8, (2019). DOI: https://doi.org/10.16984/saufenbilder.357403
A. Caserta, G. Di Maio and L. D. R. Kocinac, Statistical convergence in function spaces. Abstr. Appl. Anal., Art. ID 420419, 11 pp. (2011). DOI: https://doi.org/10.1155/2011/420419
M. Cınar, M. Karakas and M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions. Fixed Point Theory And Applications 33, (2013). DOI: https://doi.org/10.1186/1687-1812-2013-33
R. Colak, Statistical convergence of order α. Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub. 2010, 121-129, (2010).
J. S. Connor, The statistical and strong p−Cesaro convergence of sequences. Analysis 8, 47-63, (1988). DOI: https://doi.org/10.1524/anly.1988.8.12.47
K. Demirci, Strong A−summability and A−statistical convergence. Indian J. Pure Appl. Math. 27(6), 589-593, (1996).
G. Di Maio and L. D. R. Kocinac, Statistical convergence in topology. Topology Appl. 156, 28-45, (2008). DOI: https://doi.org/10.1016/j.topol.2008.01.015
M. Et, S. A. Mohiuddine and A. Alotaibi, On λ−statistical convergence and strongly λ−summable functions of order α. J. Inequal. Appl. 2013(469), 8 pp. (2013). DOI: https://doi.org/10.1186/1029-242X-2013-469
M. Et, B. C. Tripathy and A. J. Dutta, On pointwise statistical convergence of order α of sequences of fuzzy mappings. Kuwait J. Sci. 41(3), 17-30, (2014).
M. Et, R. Colak and Y. Altın, Strongly almost summable sequences of order α. Kuwait J. Sci. 41(2), 35-47, (2014).
H. Fast, Sur la convergence statistique. Colloq. Math. 2, 241-244, (1951). DOI: https://doi.org/10.4064/cm-2-3-4-241-244
A. R. Freedman, J. J. Sember and M. Raphael, Some Cesaro-type summability spaces. Proc. London Math. Soc. (3) 37(3), 508-520, (1978). DOI: https://doi.org/10.1112/plms/s3-37.3.508
J. Fridy, On statistical convergence. Analysis 5, 301-313, (1985). DOI: https://doi.org/10.1524/anly.1985.5.4.301
J. Fridy and C. Orhan, Lacunary statistical convergence. Pacific J. Math. 160, 43-51, (1993). DOI: https://doi.org/10.2140/pjm.1993.160.43
M. Isık and K. E. Et, On lacunary statistical convergence of order α in probability. AIP Conference Proceedings 1676, 020045 (2015). DOI: https://doi.org/10.1063/1.4930471
M. Isık, Generalized vector-valued sequence spaces defined by modulus functions. J. Inequal, Appl. Art. ID 457892, 7 pp. 657-663, (2010). DOI: https://doi.org/10.1155/2010/457892
H. Kaplan and H. Cakallı, Variations on strong lacunary quasi-Cauchy sequences. J. Nonlinear Sci. Appl. 9(6), 4371-4380, (2016). DOI: https://doi.org/10.22436/jnsa.009.06.77
S. Pehlivan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions. Comment. Math. Univ. Carolin. 36(1), 69-76, (1995).
T. Salat, On statistically convergent sequences of real numbers. Math. Slovaca 30, 139-150, (1980).
E. Savas and M. Et, On (∆mλ, I)−statistical convergence of order α. Period. Math. Hungar. 71(2), 135-145, (2015). DOI: https://doi.org/10.1007/s10998-015-0087-y
I. J. Schoenberg, The integrability of certain functions and related summability methods. Amer. Math. Monthly 66, 361-375, (1959). DOI: https://doi.org/10.2307/2308747
H. Sengul, Some Cesaro-type summability spaces defined by a modulus function of order (α, β). Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat. 66(2), 80-90, (2017). DOI: https://doi.org/10.1501/Commua1_0000000803
H. Sengul, On Sβα (θ) −convergence and strong Nβα (θ, p) −summability. J. Nonlinear Sci. Appl. 10(9), 5108-5115, (2017). DOI: https://doi.org/10.22436/jnsa.010.09.46
H. Sengul and Z. Arıca, Lacunary A−statistical convergence and lacunary strong A−convergence of order α with respect to a modulus. AIP Conference Proceedings 2086, 030037 (2019).
H. Sengul and M. Et, On I−lacunary statistical convergence of order α of sequences of sets. Filomat 31(8), 2403-2412, (2017). DOI: https://doi.org/10.2298/FIL1708403S
H. Sengul and Z. Arıca, On Strong Nαθ (A, F)−convergence. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(2), 1629-1637, (2019).
H. Sengul, M. Et and H. Cakalli, Lacunary A−statistical convergence and lacunary strong A−convergence sequences of order (α, β) with respect to a modulus. International Conference of Mathematical Sciences, (ICMS 2019), Maltepe University, Istanbul, Turkey. DOI: https://doi.org/10.1063/1.5095122
H. M. Srivastava and M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order α. Filomat 31(6), 1573-1582, (2017). DOI: https://doi.org/10.2298/FIL1706573S
H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73-74, (1951).
I. Taylan, Abel statistical delta quasi Cauchy sequences of real numbers. Maltepe Journal of Mathematics 1(1), 18-23, (2019). DOI: https://doi.org/10.1063/1.5095128
S. Yıldız, Lacunary statistical p-quasi Cauchy sequences. Maltepe Journal of Mathematics 1(1), 9-17, (2019). DOI: https://doi.org/10.1063/1.5095130
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).