On $S_{\alpha }^{\beta }(\theta ,A,F)-$convergence and strong $N_{\alpha }^{\beta }(\theta ,A,F)-$convergence

Abstract

In this paper, we introduce strong $N_{\alpha }^{\beta }(\theta ,A,F)-$convergence and $S_{\alpha }^{\beta }(\theta ,A,F)-$% convergence with respect to a sequence of modulus functions and give some connections between strongly $N_{\alpha }^{\beta }(\theta ,A,F)-$convergent sequences and $S_{\alpha }^{\beta }(\theta ,A,F)-$convergent sequences for $% 0<\alpha \leq \beta \leq 1$.

Downloads

Download data is not yet available.

References

V. K. Bhardwaj and S. Dhawan, Density by moduli and lacunary statistical convergence. Abstr. Appl. Anal., Art. ID 9365037, 11 pp. (2016). DOI: https://doi.org/10.1155/2016/9365037

T. Bilgin, Lacunary strong A−convergence with respect to a modulus. Studia Univ. Babe¸s-Bolyai Math. 46(4), 39-46, (2001).

T. Bilgin, Lacunary strong A−convergence with respect to a sequence of modulus functions. Appl. Math. Comput. 151(3), 595-600, (2004). DOI: https://doi.org/10.1016/S0096-3003(03)00364-3

H. Cakallı, Lacunary statistical convergence in topological groups. Indian J. Pure Appl. Math. 26(2), 113-119, (1995).

H. Cakallı, A study on statistical convergence. Funct. Anal. Approx. Comput. 1(2), 19-24, (2009).

H. Cakalli, A new approach to statistically quasi Cauchy sequences. Maltepe Journal of Mathematics 1(1), 1-8, (2019). DOI: https://doi.org/10.16984/saufenbilder.357403

A. Caserta, G. Di Maio and L. D. R. Kocinac, Statistical convergence in function spaces. Abstr. Appl. Anal., Art. ID 420419, 11 pp. (2011). DOI: https://doi.org/10.1155/2011/420419

M. Cınar, M. Karakas and M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions. Fixed Point Theory And Applications 33, (2013). DOI: https://doi.org/10.1186/1687-1812-2013-33

R. Colak, Statistical convergence of order α. Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub. 2010, 121-129, (2010).

J. S. Connor, The statistical and strong p−Cesaro convergence of sequences. Analysis 8, 47-63, (1988). DOI: https://doi.org/10.1524/anly.1988.8.12.47

K. Demirci, Strong A−summability and A−statistical convergence. Indian J. Pure Appl. Math. 27(6), 589-593, (1996).

G. Di Maio and L. D. R. Kocinac, Statistical convergence in topology. Topology Appl. 156, 28-45, (2008). DOI: https://doi.org/10.1016/j.topol.2008.01.015

M. Et, S. A. Mohiuddine and A. Alotaibi, On λ−statistical convergence and strongly λ−summable functions of order α. J. Inequal. Appl. 2013(469), 8 pp. (2013). DOI: https://doi.org/10.1186/1029-242X-2013-469

M. Et, B. C. Tripathy and A. J. Dutta, On pointwise statistical convergence of order α of sequences of fuzzy mappings. Kuwait J. Sci. 41(3), 17-30, (2014).

M. Et, R. Colak and Y. Altın, Strongly almost summable sequences of order α. Kuwait J. Sci. 41(2), 35-47, (2014).

H. Fast, Sur la convergence statistique. Colloq. Math. 2, 241-244, (1951). DOI: https://doi.org/10.4064/cm-2-3-4-241-244

A. R. Freedman, J. J. Sember and M. Raphael, Some Cesaro-type summability spaces. Proc. London Math. Soc. (3) 37(3), 508-520, (1978). DOI: https://doi.org/10.1112/plms/s3-37.3.508

J. Fridy, On statistical convergence. Analysis 5, 301-313, (1985). DOI: https://doi.org/10.1524/anly.1985.5.4.301

J. Fridy and C. Orhan, Lacunary statistical convergence. Pacific J. Math. 160, 43-51, (1993). DOI: https://doi.org/10.2140/pjm.1993.160.43

M. Isık and K. E. Et, On lacunary statistical convergence of order α in probability. AIP Conference Proceedings 1676, 020045 (2015). DOI: https://doi.org/10.1063/1.4930471

M. Isık, Generalized vector-valued sequence spaces defined by modulus functions. J. Inequal, Appl. Art. ID 457892, 7 pp. 657-663, (2010). DOI: https://doi.org/10.1155/2010/457892

H. Kaplan and H. Cakallı, Variations on strong lacunary quasi-Cauchy sequences. J. Nonlinear Sci. Appl. 9(6), 4371-4380, (2016). DOI: https://doi.org/10.22436/jnsa.009.06.77

S. Pehlivan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions. Comment. Math. Univ. Carolin. 36(1), 69-76, (1995).

T. Salat, On statistically convergent sequences of real numbers. Math. Slovaca 30, 139-150, (1980).

E. Savas and M. Et, On (∆mλ, I)−statistical convergence of order α. Period. Math. Hungar. 71(2), 135-145, (2015). DOI: https://doi.org/10.1007/s10998-015-0087-y

I. J. Schoenberg, The integrability of certain functions and related summability methods. Amer. Math. Monthly 66, 361-375, (1959). DOI: https://doi.org/10.2307/2308747

H. Sengul, Some Cesaro-type summability spaces defined by a modulus function of order (α, β). Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat. 66(2), 80-90, (2017). DOI: https://doi.org/10.1501/Commua1_0000000803

H. Sengul, On Sβα (θ) −convergence and strong Nβα (θ, p) −summability. J. Nonlinear Sci. Appl. 10(9), 5108-5115, (2017). DOI: https://doi.org/10.22436/jnsa.010.09.46

H. Sengul and Z. Arıca, Lacunary A−statistical convergence and lacunary strong A−convergence of order α with respect to a modulus. AIP Conference Proceedings 2086, 030037 (2019).

H. Sengul and M. Et, On I−lacunary statistical convergence of order α of sequences of sets. Filomat 31(8), 2403-2412, (2017). DOI: https://doi.org/10.2298/FIL1708403S

H. Sengul and Z. Arıca, On Strong Nαθ (A, F)−convergence. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(2), 1629-1637, (2019).

H. Sengul, M. Et and H. Cakalli, Lacunary A−statistical convergence and lacunary strong A−convergence sequences of order (α, β) with respect to a modulus. International Conference of Mathematical Sciences, (ICMS 2019), Maltepe University, Istanbul, Turkey. DOI: https://doi.org/10.1063/1.5095122

H. M. Srivastava and M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order α. Filomat 31(6), 1573-1582, (2017). DOI: https://doi.org/10.2298/FIL1706573S

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73-74, (1951).

I. Taylan, Abel statistical delta quasi Cauchy sequences of real numbers. Maltepe Journal of Mathematics 1(1), 18-23, (2019). DOI: https://doi.org/10.1063/1.5095128

S. Yıldız, Lacunary statistical p-quasi Cauchy sequences. Maltepe Journal of Mathematics 1(1), 9-17, (2019). DOI: https://doi.org/10.1063/1.5095130

Published
2022-12-26
Section
Articles