Generalizations of 2-absorbing primal ideals in commutative rings
Abstract
Let $R$ be a commutative ring with unity $(1\not=0)$. A proper ideal of $R$ is an ideal $I$ of $R$ such that $I\not=R$. Let $\phi : \mathfrak{I}(R)\rightarrow\mathfrak{I}(R)\cup\{\emptyset\}$ be any function, where $\mathfrak{I}(R)$ denotes the set of all proper ideals of $R$. In this paper we introduce the concept of a $\phi$-2-absorbing primal ideal which is a generalization of a $\phi$-primal ideal. An element $a\in R$ is defined to be $\phi$-2-absorbing prime to $I$ if for any $r,s,t\in R$ with $rsta\in I\setminus\phi(I)$, then $rs\in I$ or $rt\in I$ or $st\in I$. An element $a\in R$ is not $\phi$-2-absorbing prime to $I$ if there exist $r,s,t\in R$, with $rsta\in I\setminus\phi(I)$, such that $rs, rt, st\in R\setminus I$. We denote by $\nu_\phi(I)$ the set of all elements in $R$ that are not $\phi$-2-absorbing prime to $I$. We define a proper ideal $I$ of $R$ to be a $\phi$-2-absorbing primal if the set $\nu_\phi(I)\cup\phi(I)$ forms an ideal of $R$. Many results concerning $\phi$-2-absorbing primal ideals and examples of $\phi$-2-absorbing primal ideals are given.
Downloads
References
D. Anderson, A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39, 1646-1672, (2011).
D. Anderson, M. Bataineh, Generalizations of prime ideals, Comm. in Algebra 36, 686-696, (2008).
A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75, 417-429, (2007).
A. Badawi, U. Tekir, E. A. Ugurlu, G. Ulucak, E. Y. Celikel, Generalizations of 2-absorbing primary ideals of commutative rings, Turkish J. of Math., 40, 703-717, (2016).
A. Badawi, U. Tekir, E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51(4), 1163-1173, (2014).
Y. Darani, Generalizations of primal ideals in commutative rings, MATEMATIQKI VESNIK, 64(1), 25-31, (2012).
L. Fuchs, On primal ideals, Amer. Math. Soc. 1, 1-6, (1950).
A. Jaber, Properties of weakly 2-absorbing primal ideals, Italian Journal of pure and applied mathematics, 47, 609-619, (2022).
A. Jaber, H. Obiedat, On 2-absorbing primal ideals, Far East Journal of Mathematical Sciences, 103(1), 53-66, (2018).
S. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum, 7(6), 265-271, (2012).
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).