Generalizations of 2-absorbing primal ideals in commutative rings

Abstract

Let $R$ be a commutative ring with unity $(1\not=0)$. A proper ideal of $R$ is an ideal $I$ of $R$ such that $I\not=R$. Let $\phi : \mathfrak{I}(R)\rightarrow\mathfrak{I}(R)\cup\{\emptyset\}$ be any function, where $\mathfrak{I}(R)$ denotes the set of all proper ideals of $R$. In this paper we introduce the concept of a $\phi$-2-absorbing primal ideal which is a generalization of a $\phi$-primal ideal. An element $a\in R$ is defined to be $\phi$-2-absorbing prime to $I$ if for any $r,s,t\in R$ with $rsta\in I\setminus\phi(I)$, then $rs\in I$ or $rt\in I$ or $st\in I$. An element $a\in R$ is not $\phi$-2-absorbing prime to $I$ if there exist $r,s,t\in R$, with $rsta\in I\setminus\phi(I)$, such that $rs, rt, st\in R\setminus I$. We denote by $\nu_\phi(I)$ the set of all elements in $R$ that are not $\phi$-2-absorbing prime to $I$. We define a proper ideal $I$ of $R$ to be a $\phi$-2-absorbing primal if the set $\nu_\phi(I)\cup\phi(I)$ forms an ideal of $R$. Many results concerning $\phi$-2-absorbing primal ideals and examples of $\phi$-2-absorbing primal ideals are given.

Downloads

Download data is not yet available.

Author Biography

Ameer Jaber, The Hashemite University

Mathematics Dept.

Associate Professor

References

D. Anderson, A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39, 1646-1672, (2011).

D. Anderson, M. Bataineh, Generalizations of prime ideals, Comm. in Algebra 36, 686-696, (2008).

A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75, 417-429, (2007).

A. Badawi, U. Tekir, E. A. Ugurlu, G. Ulucak, E. Y. Celikel, Generalizations of 2-absorbing primary ideals of commutative rings, Turkish J. of Math., 40, 703-717, (2016).

A. Badawi, U. Tekir, E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51(4), 1163-1173, (2014).

Y. Darani, Generalizations of primal ideals in commutative rings, MATEMATIQKI VESNIK, 64(1), 25-31, (2012).

L. Fuchs, On primal ideals, Amer. Math. Soc. 1, 1-6, (1950).

A. Jaber, Properties of weakly 2-absorbing primal ideals, Italian Journal of pure and applied mathematics, 47, 609-619, (2022).

A. Jaber, H. Obiedat, On 2-absorbing primal ideals, Far East Journal of Mathematical Sciences, 103(1), 53-66, (2018).

S. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum, 7(6), 265-271, (2012).

Published
2024-04-26
Section
Articles