Applications of fractional difference operators for new version of Brudno-Mazur Orlicz bounded consistency theorem
Résumé
In this paper, we intend to prove that the modulus $\mathcal{A}-$lacunary statistical convergence of fractional difference double sequences and modulus lacunary fractional matrix of four-dimensions taken over the space of modulus $\mathcal{A}-$lacunary fractional difference uniformly integrable real sequences are equivalent. We represent another version of the Brudno-Mazur Orlicz bounded consistency theorem by using modulus function, lacunary sequence, and fractional difference operator. We show that the four-dimensional $RH-$ regular matrices $\mathcal{A}$ and $\mathcal{B}$ are modulus lacunary fractional difference consistent over the multipliers space of modulus fractional difference $\mathcal{A}-$summable sequences and an algebra $Z.$
Téléchargements
Références
A. Alotaibi, K. Raj and S. A. Mohiuddine, Some generalized difference sequence spaces defined by a sequence of moduli in n-normed spaces, J. Funct. Spaces, 2015 (2015), Article ID 413850, 8 pages.
P. Baliarsingh, U. Kadak and M. Mursaleen, On statistical convergence of difference sequences of fractional order and related Korovkin type approximation theorems, Quaest. Math., 41 (2018), 1117- 1133.
P. Baliarsingh, On difference double sequence spaces of fractional order, Indian J. Math., 58 (2016), 287-310.
J. Boos, Classical and modern methods in summability, Oxford University Press, Oxford (2000).
A. Brudno, Summation of bounded sequences by matrices, Recueil Math., N.S. 16 (1945), 191-247.
A. Choudhary and K. Raj, Applications of double difference fractional order operators, J. Comput. Anal. Appl., 28 (2020), 94-103.
S. Dutta and P. Baliarsingh, A note on paranormed difference sequence spaces of fractional order and their matrix transformations, J. Egypt. Math. Soc., 22 (2014), 249-253.
A. R. Freedman, J. J. Sember and M. Raphel, Some Cesaro-type summability spaces, Proc. London Math. Soc., 37 (1978), 508-520.
H. J. Hamilton, Transformation of multiple sequences, Duke Math. J., 2 (1936), 29-60.
M. K. Khan and C. Orhan, Matrix characterization of A-statistical convergence, J. Math. Anal. Appl., 335 (2007), 406-417.
S. Mazur and W. Orlicz, Sur les methodes linearis de sommation, C. R. Acad. Sci. Paris, 196 (1933), 32-34.
S. Mazur and W. Orlicz, On linear methods of summability, Studia Math., 14 (1954), 129-160.
H. I. Miller, A-statistical convergence of subsequence of double sequences, Bollettino U.M.I, 10-B (2007), 727-739.
H. I. Miller and L. Miller-Van Wieren, A matrix charracterization of statistical convergence of double sequences, Sarajevo J. Math., 4 (2008), 91-95.
F. Moricz, Extensions of the spaces c and c0 from single to double sequences, Acta Math. Hungar., 57 (1991), 129-136.
M. Mursaleen, A. Alotaibi and S. K. Sharma, Some new lacunary strong convergent vector-valued sequence spaces, Abstract Appl. Anal., 2014 (2014), Article ID 858504, 8 pages.
H. Nakano, Modular sequence spaces, Proc. Jpn. Acad. Ser. A Math. Sci., 27 (1951), 508-512.
C. Orhan and M. Unver, Matrix Characterization of A-statistical convergence of double sequences, Acta Math. Hungar., 143 (2014), 159-175.
C. Orhan, Some inequalities between functionals on bounded sequences, Studia Sci. Math. Hungarica, 44 (2007), 225-232.
R. F. Patterson, Four dimensional characterization of bounded double sequences, Tamkang J. Math., 35 (2004), 129-134.
K. Raj, A. Choudhary and C. Sharma, Almost strongly Orlicz double sequence spaces of regular matrices and their applications to statistical convergence, Asian-Eur. J. Math., 11 (2018), 1850073, 14pp.
K. Raj and A. Choudhary, Kothe-Orlicz vector-valued weakly sequence spaces of difference operators, Methods Funct. Anal. Topology, 25 (2019), 161-176.
K. Raj and C. Sharma, Applications of strongly convergent sequences to Fourier series by means of modulus functions, Acta Math. Hungar., 150 (2016), 396-411.
G. M. Robison, Divergent double sequences and series, Trans. Amer. Math. Soc., 28 (1926), 50-73.
E. Savas, On generalized sequence spaces via modulus function, J. Inequal. Appl., 2014, 2014:101.
A. K. Synder and A. Wilansky, The Mazur-Orlicz bounded consistency theorem, Proc. Amer. Math. Soc., 80 (1980), 374-375.
E. Tas and C. Orhan, Characterization of q-Cesaro convergence for double sequences, Stud. Univ. Babes-Bolyai Math., 62 (2017), 367-376.
B. C. Tripathy and H. Dutta, On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary -statistical convergence, An. Stiint. Univ. Ovidius Constanta, Ser. Mat., 20 (2012), 417-430.
B. C. Tripathy and M. Et, On generalized difference lacunary statistical convergence, Studia Univ. Babec-Bolyai Math., 50 (2005), 119-130.
M. Unver, Characterization of multidimensional A- strong convergence, Studia Sci. Math. Hungar., 50 (2013), 17-25.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).