Applications of fractional difference operators for new version of Brudno-Mazur Orlicz bounded consistency theorem

Abstract

In this paper, we intend to prove that the modulus $\mathcal{A}-$lacunary statistical convergence of fractional difference double sequences and modulus lacunary fractional matrix of four-dimensions taken over the space of modulus $\mathcal{A}-$lacunary fractional difference uniformly integrable real sequences are equivalent. We represent another version of the Brudno-Mazur Orlicz bounded consistency theorem by using modulus function, lacunary sequence, and fractional difference operator. We show that the four-dimensional $RH-$ regular matrices $\mathcal{A}$ and $\mathcal{B}$ are modulus lacunary fractional difference consistent over the multipliers space of modulus fractional difference $\mathcal{A}-$summable sequences and an algebra $Z.$

Downloads

Download data is not yet available.

Author Biographies

Kuldip Raj, Shri Mata Vaishno Devi University

Department of Mathematics

Anu Choudhary, Shri Mata Vaishno Devi University

Department of Mathematics

Mohammad Mursaleen, China Medical University

Department of Mathematics

References

A. Alotaibi, K. Raj and S. A. Mohiuddine, Some generalized difference sequence spaces defined by a sequence of moduli in n-normed spaces, J. Funct. Spaces, 2015 (2015), Article ID 413850, 8 pages.

P. Baliarsingh, U. Kadak and M. Mursaleen, On statistical convergence of difference sequences of fractional order and related Korovkin type approximation theorems, Quaest. Math., 41 (2018), 1117- 1133.

P. Baliarsingh, On difference double sequence spaces of fractional order, Indian J. Math., 58 (2016), 287-310.

J. Boos, Classical and modern methods in summability, Oxford University Press, Oxford (2000).

A. Brudno, Summation of bounded sequences by matrices, Recueil Math., N.S. 16 (1945), 191-247.

A. Choudhary and K. Raj, Applications of double difference fractional order operators, J. Comput. Anal. Appl., 28 (2020), 94-103.

S. Dutta and P. Baliarsingh, A note on paranormed difference sequence spaces of fractional order and their matrix transformations, J. Egypt. Math. Soc., 22 (2014), 249-253.

A. R. Freedman, J. J. Sember and M. Raphel, Some Cesaro-type summability spaces, Proc. London Math. Soc., 37 (1978), 508-520.

H. J. Hamilton, Transformation of multiple sequences, Duke Math. J., 2 (1936), 29-60.

M. K. Khan and C. Orhan, Matrix characterization of A-statistical convergence, J. Math. Anal. Appl., 335 (2007), 406-417.

S. Mazur and W. Orlicz, Sur les methodes linearis de sommation, C. R. Acad. Sci. Paris, 196 (1933), 32-34.

S. Mazur and W. Orlicz, On linear methods of summability, Studia Math., 14 (1954), 129-160.

H. I. Miller, A-statistical convergence of subsequence of double sequences, Bollettino U.M.I, 10-B (2007), 727-739.

H. I. Miller and L. Miller-Van Wieren, A matrix charracterization of statistical convergence of double sequences, Sarajevo J. Math., 4 (2008), 91-95.

F. Moricz, Extensions of the spaces c and c0 from single to double sequences, Acta Math. Hungar., 57 (1991), 129-136.

M. Mursaleen, A. Alotaibi and S. K. Sharma, Some new lacunary strong convergent vector-valued sequence spaces, Abstract Appl. Anal., 2014 (2014), Article ID 858504, 8 pages.

H. Nakano, Modular sequence spaces, Proc. Jpn. Acad. Ser. A Math. Sci., 27 (1951), 508-512.

C. Orhan and M. Unver, Matrix Characterization of A-statistical convergence of double sequences, Acta Math. Hungar., 143 (2014), 159-175.

C. Orhan, Some inequalities between functionals on bounded sequences, Studia Sci. Math. Hungarica, 44 (2007), 225-232.

R. F. Patterson, Four dimensional characterization of bounded double sequences, Tamkang J. Math., 35 (2004), 129-134.

K. Raj, A. Choudhary and C. Sharma, Almost strongly Orlicz double sequence spaces of regular matrices and their applications to statistical convergence, Asian-Eur. J. Math., 11 (2018), 1850073, 14pp.

K. Raj and A. Choudhary, Kothe-Orlicz vector-valued weakly sequence spaces of difference operators, Methods Funct. Anal. Topology, 25 (2019), 161-176.

K. Raj and C. Sharma, Applications of strongly convergent sequences to Fourier series by means of modulus functions, Acta Math. Hungar., 150 (2016), 396-411.

G. M. Robison, Divergent double sequences and series, Trans. Amer. Math. Soc., 28 (1926), 50-73.

E. Savas, On generalized sequence spaces via modulus function, J. Inequal. Appl., 2014, 2014:101.

A. K. Synder and A. Wilansky, The Mazur-Orlicz bounded consistency theorem, Proc. Amer. Math. Soc., 80 (1980), 374-375.

E. Tas and C. Orhan, Characterization of q-Cesaro convergence for double sequences, Stud. Univ. Babes-Bolyai Math., 62 (2017), 367-376.

B. C. Tripathy and H. Dutta, On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary -statistical convergence, An. Stiint. Univ. Ovidius Constanta, Ser. Mat., 20 (2012), 417-430.

B. C. Tripathy and M. Et, On generalized difference lacunary statistical convergence, Studia Univ. Babec-Bolyai Math., 50 (2005), 119-130.

M. Unver, Characterization of multidimensional A- strong convergence, Studia Sci. Math. Hungar., 50 (2013), 17-25.

Published
2024-05-20
Section
Articles