Summation formulas for the function ${R_1}\left[ {\mu,\delta,\delta';\gamma;\nu ,\tau ,{z_1},{z_2}} \right]$
SFF
Resumen
In this paper, we obtain finite and infinite summation formulas for Appell-type extension of $_pR_q(\nu,\tau;z)$ function, denoted as ${R_1}\left[ {\mu,\delta,\delta';\gamma;\nu ,\tau ,{z_1},{z_2}} \right]$ and confluent functions $R{\Phi _1}\left[ {\mu,\delta;\gamma;\nu ,\tau ,{z_1},{z_2}} \right], R{\Phi _2}\left[ {\delta,\delta';\gamma;\nu ,\tau ,{z_1},{z_2}} \right]$ and $R{\Phi _3}\left[ {\delta;\gamma;\nu ,\tau ,{z_1},{z_2}} \right].$Descargas
La descarga de datos todavía no está disponible.
Citas
\bibitem{y1} Yu. A. Brychkov, N. Saad, Some formulas for the Appell function $F_1(a; b; b'; c;w; z)$, Integral Transform Spec Funct., 23(11)(2012), 793-802.
\bibitem{d1} R. Desai, A. K. Shukla, Some results on function ${}_p{R_q}(\alpha ,\beta ;z)$, J. Math. Anal. Appl., 448(1)(2017), 187-197.
\bibitem{d2} R. Desai, A. K. Shukla, Note on the ${}_pR_q(\alpha,\beta; z)$ function, J. Indian Math. Soc., 88(3-4) (2021), 288-297.
\bibitem{r1} E. D. Rainville, Special Functions, Mcmillan, New York, (1960).
\bibitem{t1} Y. M. Thakkar, A. K. Shukla, Some results involving the $_pR_q(\alpha,\beta;z)$ Function, J. Indian Math. Soc., Accepted for publication.
\bibitem{t2} Y. M. Thakkar, A. K. Shukla, Appell-Type Extension of The $_pR_q(\alpha,\beta;z)$ Function, Communicated for publication.
\bibitem{t3} Y. M. Thakkar, A. K. Shukla, Some Formulas For The Function ${R_1}\left[ {\mu,\delta,\delta';\gamma;\nu ,\tau ,{z_1},{z_2}} \right]$, Communicated for publication.
\bibitem{w1} X. Wang, Infinite summatition formulas of double hypergeometric functions, Integral Transform Spec Funct., 27(5)(2015), 347-364.
\bibitem{d1} R. Desai, A. K. Shukla, Some results on function ${}_p{R_q}(\alpha ,\beta ;z)$, J. Math. Anal. Appl., 448(1)(2017), 187-197.
\bibitem{d2} R. Desai, A. K. Shukla, Note on the ${}_pR_q(\alpha,\beta; z)$ function, J. Indian Math. Soc., 88(3-4) (2021), 288-297.
\bibitem{r1} E. D. Rainville, Special Functions, Mcmillan, New York, (1960).
\bibitem{t1} Y. M. Thakkar, A. K. Shukla, Some results involving the $_pR_q(\alpha,\beta;z)$ Function, J. Indian Math. Soc., Accepted for publication.
\bibitem{t2} Y. M. Thakkar, A. K. Shukla, Appell-Type Extension of The $_pR_q(\alpha,\beta;z)$ Function, Communicated for publication.
\bibitem{t3} Y. M. Thakkar, A. K. Shukla, Some Formulas For The Function ${R_1}\left[ {\mu,\delta,\delta';\gamma;\nu ,\tau ,{z_1},{z_2}} \right]$, Communicated for publication.
\bibitem{w1} X. Wang, Infinite summatition formulas of double hypergeometric functions, Integral Transform Spec Funct., 27(5)(2015), 347-364.
Publicado
2025-09-01
Número
Sección
Articles
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).