Summation formulas for the function R1 [µ, δ, δ′; γ; ν, τ, z1, z2]

  • Yogesh M. Thakkar Sardar Vallabhbhai National Institute of Technology, Surat
  • Ajay K. Shukla S. V. NATIONAL INSTITUTE OF TECHNOLOGY,SURAT-395007

Abstract

In this paper, we obtain finite and infinite summation formulas for Appell-type extension of $_pR_q(\nu,\tau;z)$ function, denoted as ${R_1}\left[ {\mu,\delta,\delta';\gamma;\nu ,\tau ,{z_1},{z_2}} \right]$ and confluent functions $R{\Phi _1}\left[ {\mu,\delta;\gamma;\nu ,\tau ,{z_1},{z_2}} \right], R{\Phi _2}\left[ {\delta,\delta';\gamma;\nu ,\tau ,{z_1},{z_2}} \right]$ and $R{\Phi _3}\left[ {\delta;\gamma;\nu ,\tau ,{z_1},{z_2}} \right].$

Downloads

Download data is not yet available.

References

Brychkov Yu A. and Saad N., Some formulas for the Appell function F1(a; b; b′; c; w; z), Integral Transform Spec Funct. 23(11), 793-802, (2012).

Desai R. and Shukla A. K., Some results on function pRq(α, β; z), J. Math. Anal. Appl. 448, 187-197, (2017).

Desai R. and Shukla A. K., Note on the pRq(α, β; z) function, J. Indian Math. Soc. 88(3-4), 288-297, (2021).

Erdelyi A. and Bateman H., Higher Transcendental Functions vol. I, McGraw-Hill, New York, (1953).

Rainville E. D., Special Functions, The Macmillan Company, New York, (1960).

Thakkar Y. M. and Shukla A. K., Some results involving the pRq(α, β; z) Function, J. Indian Math. Soc. 90(3-4), 329-342, 2023.

Thakkar Y. M. and Shukla A. K., Appell-Type Extension of The pRq(α, β; z) Function, Communicated for publication.

Thakkar Y. M. and Shukla A. K., Some Formulas For The Function R1 [µ, δ, δ′; γ; ν, τ, z1, z2], Communicated for publication.

Thakkar Y. M. and Shukla A. K., Some Formulas For The Function R3[µ, µ′δ, δ′; γ; ν, τ, z1, z2], Advanced Studies: Euro-Tbilisi Mathematical Journal 16(3), 53–66, (2023).

Wang X., Infinite summatition formulas of double hypergeometric functions, Integral Transform Spec Funct., 27(5), 347-364 (2015).

Published
2025-09-01
Section
Research Articles