Summation formulas for the function ${R_1}\left[ {\mu,\delta,\delta';\gamma;\nu ,\tau ,{z_1},{z_2}} \right]$
SFF
Resumo
In this paper, we obtain finite and infinite summation formulas for Appell-type extension of $_pR_q(\nu,\tau;z)$ function, denoted as ${R_1}\left[ {\mu,\delta,\delta';\gamma;\nu ,\tau ,{z_1},{z_2}} \right]$ and confluent functions $R{\Phi _1}\left[ {\mu,\delta;\gamma;\nu ,\tau ,{z_1},{z_2}} \right], R{\Phi _2}\left[ {\delta,\delta';\gamma;\nu ,\tau ,{z_1},{z_2}} \right]$ and $R{\Phi _3}\left[ {\delta;\gamma;\nu ,\tau ,{z_1},{z_2}} \right].$Downloads
Não há dados estatísticos.
Referências
\bibitem{y1} Yu. A. Brychkov, N. Saad, Some formulas for the Appell function $F_1(a; b; b'; c;w; z)$, Integral Transform Spec Funct., 23(11)(2012), 793-802.
\bibitem{d1} R. Desai, A. K. Shukla, Some results on function ${}_p{R_q}(\alpha ,\beta ;z)$, J. Math. Anal. Appl., 448(1)(2017), 187-197.
\bibitem{d2} R. Desai, A. K. Shukla, Note on the ${}_pR_q(\alpha,\beta; z)$ function, J. Indian Math. Soc., 88(3-4) (2021), 288-297.
\bibitem{r1} E. D. Rainville, Special Functions, Mcmillan, New York, (1960).
\bibitem{t1} Y. M. Thakkar, A. K. Shukla, Some results involving the $_pR_q(\alpha,\beta;z)$ Function, J. Indian Math. Soc., Accepted for publication.
\bibitem{t2} Y. M. Thakkar, A. K. Shukla, Appell-Type Extension of The $_pR_q(\alpha,\beta;z)$ Function, Communicated for publication.
\bibitem{t3} Y. M. Thakkar, A. K. Shukla, Some Formulas For The Function ${R_1}\left[ {\mu,\delta,\delta';\gamma;\nu ,\tau ,{z_1},{z_2}} \right]$, Communicated for publication.
\bibitem{w1} X. Wang, Infinite summatition formulas of double hypergeometric functions, Integral Transform Spec Funct., 27(5)(2015), 347-364.
\bibitem{d1} R. Desai, A. K. Shukla, Some results on function ${}_p{R_q}(\alpha ,\beta ;z)$, J. Math. Anal. Appl., 448(1)(2017), 187-197.
\bibitem{d2} R. Desai, A. K. Shukla, Note on the ${}_pR_q(\alpha,\beta; z)$ function, J. Indian Math. Soc., 88(3-4) (2021), 288-297.
\bibitem{r1} E. D. Rainville, Special Functions, Mcmillan, New York, (1960).
\bibitem{t1} Y. M. Thakkar, A. K. Shukla, Some results involving the $_pR_q(\alpha,\beta;z)$ Function, J. Indian Math. Soc., Accepted for publication.
\bibitem{t2} Y. M. Thakkar, A. K. Shukla, Appell-Type Extension of The $_pR_q(\alpha,\beta;z)$ Function, Communicated for publication.
\bibitem{t3} Y. M. Thakkar, A. K. Shukla, Some Formulas For The Function ${R_1}\left[ {\mu,\delta,\delta';\gamma;\nu ,\tau ,{z_1},{z_2}} \right]$, Communicated for publication.
\bibitem{w1} X. Wang, Infinite summatition formulas of double hypergeometric functions, Integral Transform Spec Funct., 27(5)(2015), 347-364.
Publicado
2025-09-01
Edição
Seção
Artigos
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



