On double-switching ARMA processes

  • Amel Zerari University Centre Abdelhafid Boussouf Mila: Centre Universitaire Abdelhafid Boussouf Mila
  • Ahmed Ghezal Department of Mathematics and Computer Sciences, University Center of Mila, Algeria.
  • Imane Zemmouri Department of Mathematics, University of Annaba, Elhadjar 23, Annaba, Algeria.

Abstract

In this paper, we introduce a double-switching ARMA model, in which the observed process is an ARMA model subject to Markov switching and a periodic sequence of period s₂. We give conditions for the existence of periodic stationary solutions of the double-switching ARMA and higher-order moments of such solutions in the general vector specification. We provide an expression in closed-form of the autocovariance function of this process and its higher power and therefore admit ARMA representation.

Downloads

Download data is not yet available.

References

Bibi, A., Ghezal, A. (2019). QMLE of periodic time-varying bilinear−GARCH models. Communications in Statistics-Theory and Methods, 48(13), 3291 − 3310.

Bibi, A., Ghezal, A. (2018a). QMLE of periodic bilinear models and of PARMA models with periodic bilinear innovations. Kybernetika, 54(2), 375 − 399.

Bibi, A., Ghezal, A. (2018b) . Markov-switching BILINEAR − GARCH models: Structure and estimation. Communications in Statistics-Theory and Methods, 47(2), 307 − 323.

Bibi, A., Ghezal, A. (2016a). On periodic time-varying bilinear processes: structure and asymptotic inference. Statistical Methods & Applications, 25(3), 395 − 420.

Bibi, A., Ghezal, A. (2016b) . Minimum distance estimation of Markov-switching bilinear processes. Statistics, 50(6), 1290 − 1309.

Bibi, A., Ghezal, A. (2015a). On the Markov-switching bilinear processes: stationarity, higher-order moments and β−mixing. Stochastics: An International Journal of Probability & Stochastic Processes, 87(6), 919 − 945.

Bibi, A., Ghezal, A. (2015b). Consistency of quasi-maximum likelihood estimator for Markov-switching bilinear time series models. Statistics & Probability Letters, 100, 192 − 202.

Bougerol, P., Picard, N. (1992) Strict stationarity of generalized autoregressive processes. Annals of Probability 20, 1714 − 1730.

Brockwell, P. J., Davis, R. A. (1991) Time series: Theory and Methods, 2nd edn, Springer, New York.

Cavicchioli, M. (2021) Statistical inference for mixture GARCH models with financial application. Computational Statistics, 36, 2615 − 2642.

Cavicchioli, M. (2022) Markov switching GARCH models: higher order moments, kurtosis measures and volatility evaluation in recessions and pandemic. Journal of Business & Economic Statistics, 40(4), 1772 − 1783.

Francq, C., Roussignol, M. (1997) On white noises driven by hidden Markov chains. J. Time Series Anal. 18, 553−578.

Francq, C., Zaköıan, J. M. (2001) Stationarity of multivariate Markov-switching ARMA models. Journal of Econometrics 102, 339 − 364.

Francq, C., Roy, R., Saidi, A. (2011) Asymptotic properties of weighted least squares estimation in weak PARMA models. J. Time Series Analysis 32, 699 − 723.

Franses, P., Paap, R. (2005) Random coefficient periodic autoregression. Econometric Institute Report EI, 2005−2034.

Ghezal, A. (2023a) Asymptotic inference for periodic time-varying bivariate Poisson INGARCH(1, 1) processes. Journal of Statistics Applications & Probability Letters, 10(1), 77 − 82.

Ghezal, A. (2023a) A doubly Markov switching AR model: Some probabilistic properties and strong consistency. Journal of Mathematical Sciences. https://doi.org/10.1007/s10958-023-06262-y

Ghezal, A. Zemmouri, I. (2023b) The bispectral representation of Markov switching bilinear models. Commun. Fac.Sci. Univ.Ank.Ser. A1 Math. Stat. Accepted.

Ghezal, A. Zemmouri, I. (2023c) Estimating MS − BLGARCH models using recursive method. Pan-Amer. J. Math. 2, 1 − 7.

Ghezal, A. Zemmouri, I. (2023d). On the Markov-switching autoregressive stochastic volatility processes. Sema Journa, https://doi.org/10.1007/s40324-023-00329-1.

Ghezal, A. Zemmouri, I. (2023e). On Markov-switching asymmetric logGARCH models: stationarity and estimation. Filomat, 37 (29) , 1 − 19.

Ghezal, A. (2023f) . Spectral representation of Markov-switching bilinear processes. S˘ao Paulo Journal of Mathematical Sciences, Accepted.

Ghezal, A. (2021) . QMLE for periodic time-varying asymmetric logGARCH models. Communications in Mathematics and Statistics, 9(3), 273 − 297.

Ghezal, A. Zemmouri, I.The bispectral representation of Markov switching bilinear models. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics. In press.

Hamilton, J.D. (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57, 2, 357 − 384.

Kesten, H., Spitzer, F. (1984). Convergence in distribution of products of random matrices. Z.Wahrscheinlichkeitstheorie verw Gebiete 67, 363 − 386.

Wold, H. (1938) A study in the analysis of stationary time series. Uppsala: Almqvist & Wiksell.

Published
2025-01-27
Section
Articles