On double-switching ARMA processes
Résumé
In this paper, we introduce a double-switching ARMA model, in which the observed process is an ARMA model subject to Markov switching and a periodic sequence of period s₂. We give conditions for the existence of periodic stationary solutions of the double-switching ARMA and higher-order moments of such solutions in the general vector specification. We provide an expression in closed-form of the autocovariance function of this process and its higher power and therefore admit ARMA representation.
Téléchargements
Références
Bibi, A., Ghezal, A. (2019). QMLE of periodic time-varying bilinear−GARCH models. Communications in Statistics-Theory and Methods, 48(13), 3291 − 3310.
Bibi, A., Ghezal, A. (2018a). QMLE of periodic bilinear models and of PARMA models with periodic bilinear innovations. Kybernetika, 54(2), 375 − 399.
Bibi, A., Ghezal, A. (2018b) . Markov-switching BILINEAR − GARCH models: Structure and estimation. Communications in Statistics-Theory and Methods, 47(2), 307 − 323.
Bibi, A., Ghezal, A. (2016a). On periodic time-varying bilinear processes: structure and asymptotic inference. Statistical Methods & Applications, 25(3), 395 − 420.
Bibi, A., Ghezal, A. (2016b) . Minimum distance estimation of Markov-switching bilinear processes. Statistics, 50(6), 1290 − 1309.
Bibi, A., Ghezal, A. (2015a). On the Markov-switching bilinear processes: stationarity, higher-order moments and β−mixing. Stochastics: An International Journal of Probability & Stochastic Processes, 87(6), 919 − 945.
Bibi, A., Ghezal, A. (2015b). Consistency of quasi-maximum likelihood estimator for Markov-switching bilinear time series models. Statistics & Probability Letters, 100, 192 − 202.
Bougerol, P., Picard, N. (1992) Strict stationarity of generalized autoregressive processes. Annals of Probability 20, 1714 − 1730.
Brockwell, P. J., Davis, R. A. (1991) Time series: Theory and Methods, 2nd edn, Springer, New York.
Cavicchioli, M. (2021) Statistical inference for mixture GARCH models with financial application. Computational Statistics, 36, 2615 − 2642.
Cavicchioli, M. (2022) Markov switching GARCH models: higher order moments, kurtosis measures and volatility evaluation in recessions and pandemic. Journal of Business & Economic Statistics, 40(4), 1772 − 1783.
Francq, C., Roussignol, M. (1997) On white noises driven by hidden Markov chains. J. Time Series Anal. 18, 553−578.
Francq, C., Zaköıan, J. M. (2001) Stationarity of multivariate Markov-switching ARMA models. Journal of Econometrics 102, 339 − 364.
Francq, C., Roy, R., Saidi, A. (2011) Asymptotic properties of weighted least squares estimation in weak PARMA models. J. Time Series Analysis 32, 699 − 723.
Franses, P., Paap, R. (2005) Random coefficient periodic autoregression. Econometric Institute Report EI, 2005−2034.
Ghezal, A. (2023a) Asymptotic inference for periodic time-varying bivariate Poisson INGARCH(1, 1) processes. Journal of Statistics Applications & Probability Letters, 10(1), 77 − 82.
Ghezal, A. (2023a) A doubly Markov switching AR model: Some probabilistic properties and strong consistency. Journal of Mathematical Sciences. https://doi.org/10.1007/s10958-023-06262-y
Ghezal, A. Zemmouri, I. (2023b) The bispectral representation of Markov switching bilinear models. Commun. Fac.Sci. Univ.Ank.Ser. A1 Math. Stat. Accepted.
Ghezal, A. Zemmouri, I. (2023c) Estimating MS − BLGARCH models using recursive method. Pan-Amer. J. Math. 2, 1 − 7.
Ghezal, A. Zemmouri, I. (2023d). On the Markov-switching autoregressive stochastic volatility processes. Sema Journa, https://doi.org/10.1007/s40324-023-00329-1.
Ghezal, A. Zemmouri, I. (2023e). On Markov-switching asymmetric logGARCH models: stationarity and estimation. Filomat, 37 (29) , 1 − 19.
Ghezal, A. (2023f) . Spectral representation of Markov-switching bilinear processes. S˘ao Paulo Journal of Mathematical Sciences, Accepted.
Ghezal, A. (2021) . QMLE for periodic time-varying asymmetric logGARCH models. Communications in Mathematics and Statistics, 9(3), 273 − 297.
Ghezal, A. Zemmouri, I.The bispectral representation of Markov switching bilinear models. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics. In press.
Hamilton, J.D. (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57, 2, 357 − 384.
Kesten, H., Spitzer, F. (1984). Convergence in distribution of products of random matrices. Z.Wahrscheinlichkeitstheorie verw Gebiete 67, 363 − 386.
Wold, H. (1938) A study in the analysis of stationary time series. Uppsala: Almqvist & Wiksell.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



