Ricci bi-conformal vector fields on four-dimensional Lorentzian Damek-Ricci spaces

  • Shahroud Azami Imam Khomeini International University

Abstract

In this paper, we obtain all Ricci bi-conformal vector fields on the four-dimensional Lorentzian Damek-Ricci spaces and we show that four-dimensional Lorentzian Damek-Ricci spaces have not nontrivial Ricci bi-conformal vector fields as gradient vector filed. Also, we determine which of them are Killing vector fields.

Downloads

Download data is not yet available.

References

J-P. Anker, V. Pierfelice, and M. Vallarino, The wave equation on Damek-Ricci spaces, Ann. Mat. Pur. Appl. 194, 731-758, (2015).

J. Berndt, F. Tricerri, and L. Vanhecke, Generalized Heisenberg Groups and Damek- Ricci Harmonic Spaces, Lect. Notes Math., 1598, Springer, Heidelberg, 1995.

J. Carlos D´ıaz-Ramos and M. Domınguez-Vazquez, Isoparametric hypersurfaces in Damek-Ricci spaces, Adv. Math. 239, 1-17, (2013).

S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Addison Wesley. 133-139, (2004).

A. Cintra, F. Mercuri, and I. Onnis, Minimal surfaces in 4-dimensional Lorentzian Damek-Ricci spaces, preprint, https://arxiv.org/abs/math/1501.03427, (2015).

B. Coll, S. R. Hldebrondt and J. M. M. Senovilla, Kerr-Schild symmetries, General relativity and gravitation, 33, 649-670, (2001).

E. Damek and F. Ricci, A Class of nonsymmetric Harmonic Riemannian spaces, Bulletin Amer. Math. Soc. 27, 139-142, (1992).

U. C. De, A. Sardar, and A. Sarkar, Some conformal vector fields and conformal Ricci solitons on N(k)-contact metric manifolds, AUT J. Math. Com., 2 (1), 61-71, (2021).

S. Degla and L. Todjihounde, Biharmonic curve in four-dimensional Damek-Ricci spaces, J. Math. Sci.: Adv. Appl. 5, 19-27, (2010).

S. Deshmukh, Geometry of Conformal Vector Fields, Arab. J. Math., 23(1), 44-73.

A. Garcia-Parrado and J. M. M. Senovilla, Bi-conformal vector fields and their applications, Classical and Quantum Gravity, 21 (8), 2153-2177, (2004).

M. Koivogui and L. Todjihounde, Weierstrass Representation for minimal immer- sions into Damek-Ricci spaces, Int. Electron. J. Geom. 6, 1-7, (2013).

A. Mostefaoui and N. Sidhoumi, Homogeneous structures on four-dimensional Lorentzian Damek-Ricci spaces, Commun. Korean Math. Soc., 38(1), 195-203, (2023).

N. Sidhoumi, Ricci solitons of four-dimensional Lorentzian Damek–Ricci spaces, Journal of Mathematical Physics, Analysis, Geometry, 16(2), 190-199, (2020).

J. Tan and S. Deng, Some geometrical properties of four dimensional Lorentzian Damek-Ricci spaces, Publ. Math. Debrecen 89, 105-124, (2016).

K. Yano, The theory of Lie derivatives and its applications, Dover publications, 2020.

Published
2025-08-11
Section
Research Articles