Ricci bi-conformal vector fields on four-dimensional Lorentzian Damek-Ricci spaces
Resumen
In this paper, we obtain all Ricci bi-conformal vector fields on the four-dimensional Lorentzian Damek-Ricci spaces and we show that four-dimensional Lorentzian Damek-Ricci spaces have not nontrivial Ricci bi-conformal vector fields as gradient vector filed. Also, we determine which of them are Killing vector fields.
Descargas
Citas
J-P. Anker, V. Pierfelice, and M. Vallarino, The wave equation on Damek-Ricci spaces, Ann. Mat. Pur. Appl. 194, 731-758, (2015).
J. Berndt, F. Tricerri, and L. Vanhecke, Generalized Heisenberg Groups and Damek- Ricci Harmonic Spaces, Lect. Notes Math., 1598, Springer, Heidelberg, 1995.
J. Carlos D´ıaz-Ramos and M. Domınguez-Vazquez, Isoparametric hypersurfaces in Damek-Ricci spaces, Adv. Math. 239, 1-17, (2013).
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Addison Wesley. 133-139, (2004).
A. Cintra, F. Mercuri, and I. Onnis, Minimal surfaces in 4-dimensional Lorentzian Damek-Ricci spaces, preprint, https://arxiv.org/abs/math/1501.03427, (2015).
B. Coll, S. R. Hldebrondt and J. M. M. Senovilla, Kerr-Schild symmetries, General relativity and gravitation, 33, 649-670, (2001).
E. Damek and F. Ricci, A Class of nonsymmetric Harmonic Riemannian spaces, Bulletin Amer. Math. Soc. 27, 139-142, (1992).
U. C. De, A. Sardar, and A. Sarkar, Some conformal vector fields and conformal Ricci solitons on N(k)-contact metric manifolds, AUT J. Math. Com., 2 (1), 61-71, (2021).
S. Degla and L. Todjihounde, Biharmonic curve in four-dimensional Damek-Ricci spaces, J. Math. Sci.: Adv. Appl. 5, 19-27, (2010).
S. Deshmukh, Geometry of Conformal Vector Fields, Arab. J. Math., 23(1), 44-73.
A. Garcia-Parrado and J. M. M. Senovilla, Bi-conformal vector fields and their applications, Classical and Quantum Gravity, 21 (8), 2153-2177, (2004).
M. Koivogui and L. Todjihounde, Weierstrass Representation for minimal immer- sions into Damek-Ricci spaces, Int. Electron. J. Geom. 6, 1-7, (2013).
A. Mostefaoui and N. Sidhoumi, Homogeneous structures on four-dimensional Lorentzian Damek-Ricci spaces, Commun. Korean Math. Soc., 38(1), 195-203, (2023).
N. Sidhoumi, Ricci solitons of four-dimensional Lorentzian Damek–Ricci spaces, Journal of Mathematical Physics, Analysis, Geometry, 16(2), 190-199, (2020).
J. Tan and S. Deng, Some geometrical properties of four dimensional Lorentzian Damek-Ricci spaces, Publ. Math. Debrecen 89, 105-124, (2016).
K. Yano, The theory of Lie derivatives and its applications, Dover publications, 2020.
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



