Power centralizing semiderivations of Lie ideals in prime rings

  • Nadeem ur Rehman Aligarh Muslim University
  • Sajad Ahmad Pary Aligarh Muslim University
  • Junaid Nisar Symbiosis Institute of Technology

Abstract

If a semiderivation $\mathscr{F}$ with associated automorphism $\xi$  is induced on a non-central Lie ideal $\mathscr{L}$ of $\mathfrak{A}$  such that \begin{align*} \left[\mathscr{F}(\eta), \eta \right]^{n}\in\mathcal{Z(R)}, \end{align*} where $n$ is a fixed positive integer, and $\eta\in\mathcal{L}$, then it has been proven that either \begin{align*} Char(\mathfrak{A}) =0 \end{align*} or \begin{align*} Char(\mathfrak{A})>n+1, \end{align*} then $\mathfrak{A}$ satisfies  a standard identity in $4$ variables usually denoted by $s_4$.  

Downloads

Download data is not yet available.

References

Lions, J. L., Exact Controllability, Stabilizability, and Perturbations for Distributed Systems, Siam Rev. 30, 1-68, (1988).

Beidar, K. I., Martindale III, W. S. and Mikhalev, V., Rings with Generalized Identities, Pure and Applied Math. Dekker, New York (1996).

Bergen, J., Derivations in prime ring , Can. Math. Bull., 26 (3), 263-270, (1983).

Bresar, M., Semiderivations of prime rings, Proc. Amer. Math. Soc. 108 (4), 859–860, (1990).

Carini, L. and De Filippis, V., Commutators with power central values on a Lie ideal, Pacific. J. Math., 193 (2), 278-296, (1990).

Chuang, C. L., Differential identities with automorphisms and antiautomorphisms II, J. Algebra, 160, 130-171, (1993).

Chuang, C. L., GPIs having quotients in Utumi quotient rings, Proc. Amer. Math. Soc, 103 (3), 723-728, (1998).

Di Vincenzo, O. M., A note on k-th commutators in an associative ring, Rend. Circ. Mat. Palmero, Series II-Tomo XLVII, 106-112, (1998).

Erickson, T. S., Martindale III, W. S. and Osborn, J. M., Prime nonassociative algebras, Pacific J. Math. 60, 49-63, (1975).

Huang, S., Semiderivations with power values on Lie ideals in prime rings , Ukrainian Math. J., 65 (6), 967-971, (2013).

Jacobson, N., Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.

Kharchenko, V. K., Generalized identities with automorphisims, Algebra and Logic, 14, 132-148, (1975).

Lanski, C., Differential identities, Lie ideals and Posner’s theorems , Pac. J. Math., 134 (2), 275-297, (1975).

Martindale III, W. S., Prime rings satisfying a generalized polynomial identity, J. Algebra, 12, 576-584, (1969).

Posner, E. C., Derivations in prime rings, Proc. Amer. Math. Soc., 8, 1093-1100, (1957).

Published
2025-05-29
Section
Research Articles