Power centralizing semiderivations of Lie ideals in prime rings
Power centralizing semiderivations of Lie ideals in prime rings
Resumen
If a semiderivation $\mathscr{F}$ with associated automorphism $\xi$ is induced on a non-central Lie ideal $\mathscr{L}$ of $\mathfrak{A}$ such that \begin{align*} \left[\mathscr{F}(\eta), \eta \right]^{n}\in\mathcal{Z(R)}, \end{align*} where $n$ is a fixed positive integer, and $\eta\in\mathcal{L}$, then it has been proven that either \begin{align*} Char(\mathfrak{A}) =0 \end{align*} or \begin{align*} Char(\mathfrak{A})>n+1, \end{align*} then $\mathfrak{A}$ satisfies a standard identity in $4$ variables usually denoted by $s_4$.Descargas
La descarga de datos todavía no está disponible.
Publicado
2025-05-29
Número
Sección
Research Articles
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



