<b>On the asymptotic behavior for a nonlocal di</b> - doi: 10.5269/bspm.v26i1-2.7399
Résumé
In this paper, we consider the following initial value problem
$$U_i'(t) = \sum_{j\in B} J_{i-j}(U_J(t) - U_i(t)) - U_i^p(t),~t\geq 0,~i\in B,$$
$$ U_i(0)=\varphi_i>0;~i\in B.$$
where $B$ is a bounded subset of $Zd^$, $ p > 1$, $J_h = (J_i)_{i \in B}$ is a kernel which is nonnegative, symmetric, bounded and $\sum_{j \in Z^d} J_j = 1$. We describe the asymptotic behavior of the solution of the above problem. In this paper, we consider the following initial value problem.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Numéro
Rubrique
Articles
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).