<b>On the asymptotic behavior for a nonlocal di</b> - doi: 10.5269/bspm.v26i1-2.7399

  • Diabate Nabongo Université d'Abobo-Adjamé
  • Thédore Boni Institut National Polytechnique Houphouet-Boigny de Yamoussoukro
Keywords: Nonlocal di

Abstract

In this paper, we consider the following initial value problem

$$U_i'(t) = \sum_{j\in B} J_{i-j}(U_J(t) - U_i(t)) - U_i^p(t),~t\geq 0,~i\in B,$$

 

$$ U_i(0)=\varphi_i>0;~i\in B.$$

where $B$ is a bounded subset of $Zd^$, $ p > 1$, $J_h = (J_i)_{i \in B}$ is a kernel which is nonnegative, symmetric, bounded and $\sum_{j \in Z^d} J_j = 1$. We describe the asymptotic behavior of the solution of the above problem. In this paper, we consider the following initial value problem.

Downloads

Download data is not yet available.

Author Biography

Diabate Nabongo, Université d'Abobo-Adjamé
Universite d'Abobo-Adjame, UFR-SFA,
Departement de Mathematiques et Informatiques, 16 BP 372 Abidjan 16,
Cote d'Ivoire
Section
Articles