Geometry of $(\kappa,\mu)'$-almost Kenmotsu manifolds with divergence free Cotton tensor and vanishing Bach tensor

  • B. M. Sowmyashree JSS Science and Technology University
  • H. Aruna Kumara BMS Institute of Technology and Management, Bangalore, India
  • P. Siva Kota Reddy JSS Science and Technology University, Mysuru

Abstract

In this paper, we prove that a non-Kenmotsu $(\kappa,\mu)'$-almost Kenmotsu manifold of dimension $(2n+1)$ has divergence free Cotton tensor if and only if it is locally isometric to the Riemannian product $\mathbb{H}^{n+1}(-4)\times\mathbb{R}^n$. Finally, we show that a Bach flat non-Kenmotsu $(\kappa,\mu)'$-almost Kenmotsu manifold is 3-dimensional and is locally isometric to the Riemannian product $\mathbb{H}^2(-4)\times\mathbb{R}$.

Downloads

Download data is not yet available.

Author Biographies

H. Aruna Kumara, BMS Institute of Technology and Management, Bangalore, India

Assistant Professor, Department of Mathematics

P. Siva Kota Reddy, JSS Science and Technology University, Mysuru

Professor and Head, Department of Mathematics

References

Alloush, K. A. A., Rajendra, R., Siva Kota Reddy, P., Pavani, N., Somashekhara, G. and Shivaprasanna, G. S., Geometry of η-Ricci Yamabe Soliton on Nearly Sasakian Manifold, Bol. Soc. Parana. Mat. (3), 43, Article Id: 70582, 8 Pages, (2025).

Bach, R., Zur weylschen relativitatstheorie und der Weylschen erweiterung des krummungstensorbegriffs, Math. Z., 9(1-2), 110-135, (1921).

Bergman, J., Conformal Einstein spaces and Bach tensor generalizations in n dimensions, Thesis Linkoping, (2004).

Bertola, M. and Gouthier, D., Lie triple systems and warped products, Rend. Mat. Appl., VII. Ser., 21(1-4), 275-293, (2001).

Blair, D. E., Riemannian geometry of contact and symplectic manifolds, 2nd ed., Progress in Mathematics, 203, Boston, MA: Birkh¨auser, (2010).

Chen, Q. and He, C., On Bach flat warped product Einstein manifolds, Pac. J. Math., 265(2), 313-326, (2013).

Dai, X., Zhao, Y. and De, U. C., ∗-Ricci soliton on (κ, μ)′-almost Kenmotsu manifolds, Open Math., 17, 874-882, (2019).

Dey, D. and Majhi, P., A Classification of (κ, μ)′-almost Kenmotsu manifolds admitting Cotton tensor, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 70(1), 52-63, (2021).

Dileo, G., A classification of certain almost α-Kenmotsu manifolds, Kodai Math. J., 34(3), 426-445, (2011).

Dileo, G. and Pastore, A. M., Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. - Simon Stevin, 14(2), 343-354, (2007).

Dileo, G. and Pastore, A. M., Almost Kenmotsu manifolds and nullity distributions, J. Geom., 93(1-2), 46-61, (2009).

Fu, H. and Peng, J., Rigidity theorems for compact Bach-flat manifolds with positive constant scalar curvature, Hokkaido Math. J., 47(3), 581-605, (2018).

Ghosh, A. and Sharma, R., Sasakian manifolds with purely transversal Bach tensor, J. Math. Phys., 58(10), Article Id: 103502, 6 Pages, (2017).

Ghosh, A., Cotton tensor, Bach tensor and Kenmotsu manifolds, Afrika Matematika, 31(7-8), 1193–1205, (2020).

Ghosh, A. and Sharma, R., Classification of (κ, μ)-contact manifolds with divergence free Cotton tensor and vanishing Bach tensor, Annales Polonici Mathematici, 122, 153-163, (2019).

Girish Babu, S., Siva Kota Reddy, P., Shivaprasanna, G. S., Somashekhara, G. and Alloush, K. A. A., Generalized Quasi-Conformal Curvature Tensor and the Spacetime of General Relativity, Bol. Soc. Parana. Mat. (3), 42, 1-9, (2024).

Janssens, D. and Vanhecke, L., Almost contact structures and curvature tensors, Kodai Math. J., 4(1), 1-27, (1981).

Kenmotsu, K., A class of almost contact Riemannian manifolds, Tˆohoku Math. J. (2), 24, 93-103, (1972).

Kim, T. W. and Pak, H. K., Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sin. Engl. Ser., 21(4), 841-846, (2005).

Li, Y., Siddesha, M. S., Kumara, H. A. and Praveena, M. M., Characterization of Bach and Cotton Tensors on a Class of Lorentzian Manifolds, Mathematics, 12(19), Article Id: 3130, 11 Pages, (2024).

Naik, D. M., Venkatesha, V. and Kumara, H. A., Certain types of metrics on almost coK¨ahler manifolds, Ann. Math. Qu´e., 47(2), 331-347, (2023).

Pastore, A. M. and Saltarelli, V., Generalized nullity distributions on almost Kenmotsu manifolds, Int. Electron. J. Geom., 4(2), 168-183, (2011).

Pedersen, H. and Swann, A., Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. Reine Angew. Math., 441, 99-113, (1993).

Prakasha, D. G. Veeresha, P. and Venkatesha, The Fischer–Marsden conjecture on non-Kenmotsu (κ, μ)′-almost Kenmotsu manifolds, J. Geom., 110, Article Number 1, 9 Pages, (2019).

Schmidt, H. J., Nontrivial solutions of the Bach equation exist, Ann. Physik., 41(6), 435-436, (1984).

Shivaprasanna, G. S., Rajendra, R., Somashekhara, G. and Siva Kota Reddy, P., On Submanifolds of a Sasakian Manifold, Bol. Soc. Parana. Mat. (3), 42, 1-8, (2024).

Shivaprasanna, G. S., Rajendra, R., Siva Kota Reddy, P., Somashekhara, G. and Pavithra, M., Almost Ricci-Yamabe Solitons in f-Kenmotsu Manifolds, Bol. Soc. Parana. Mat. (3), 43, Article Id: 69758, 8 Pages, (2025).

Somashekhara, G., Girish Babu, S. and Siva Kota Reddy, P., η-Ricci soliton in an indefinite trans-Sasakian manifold admitting semi-symmetric metric connection, Bol. Soc. Parana. Mat. (3), 41, 1-9, (2023).

Venkatesha and Kumara, H. A., Gradient ρ-Einstein soliton on almost Kenmotsu manifolds, Ann. Univ. Ferrara, 65, 375-388, (2019).

Wang, Y. and Liu, X., Locally symmetric CR-integrable almost Kenmotsu manifolds, Mediter. J. Math., 12(1), 159-171, (2015).

Wang, Y. and Liu, X., On a type of almost Kenmotsu manifolds with harmonic curvature tensors, Bull. Belg. Math. Soc. Simon Stevin., 22, 15-24, (2015).

Wang, Y., Gradient Ricci alnost soliton on two classes of almost Kenmotsu manifolds, J. Korean Math. Soc., 53(5), 1101-1114, (2016).

Wang, Y. and Wang, W., Some results on (κ, μ)′-almost Kenmotsu manifolds, Quaest. Math., 41, 469-481, (2018).

Published
2025-05-29
Section
Research Articles