More on KG-Sombor index of graphs
Abstract
Topological indices are generally graph-invariant numerical properties that describe the topology of a graph. The KG-Sombor index, a vertex-edge version of the Sombor index, was recently defined as follows: $KG(G)=\sum\limits_{ue} \sqrt{d(u)^2+d(e)^2},$ where $\sum\limits_{ue}$ indicates summation over vertices $u \in V(G)$ and the edges $e \in E(G)$ that are incident to $u$. In this work, we obtained the effect of vertex and edge removal on KG-Sombor index. Also, characterized integer values of KG-Sombor index. Finally, computed a bound for the KG-Sombor index of derived graphs, including the join of graphs, the m-splitting graph, the m-shadow graph, and the corona product of graphs.
Downloads
References
J. B. Liu, B. Ali, M. A. Malik, H. M. Siddiqui, M. Imran, Reformulated Zagreb indices of some derived graphs. Mathematics 7(4), 366-380, (2019).
J. Xu, J. B. Liu, A. Bilal, U. Ahmad, H. M. Siddiqui, B. Ali, M. R. Farahani, Distance degree index of some derived graphs. Mathematics 7(3), 283-295, (2019).
V. R. Kulli, N. Harish, B. Chaluvaraju, I. Gutman, Mathematical properties of KG-Sombor index. Bulletin of International Mathematical Virtual Institute 12(2), 379-386, (2022).
I. Gutman, I. Redzepovic, V. R. Kulli, KG-Sombor index of Kragujevac trees. Open Journal of Discrete Applied Mathematics 5(1), 25-38, (2022).
S. Kosari, N. Dehgardi, A. Khan, Lower bound on the KG-Sombor index. Communications in Combinatorics and Optimization 8(4), 751-757, (2023).
H. S. Ramane, I. Gutman, K. Bhajantri, D. V. Kitturmath, Sombor index of some graph transformations. Communications in Combinatorics and Optimization 8(1), 193-205, (2023).
I. Gutman, N. Trinajstíc, Graph theory and molecular orbitals. Total ϕ-electron energy of alternant hydrocarbons. Chemical physics letters 17(4), 535-548, (1972).
A. Milicevíc, S. Nikolíc, N. Trinajstíc, On reformulated Zagreb indices. Molecular diversity 8, 393-399, (2004).
I. Gutman, B. Furtula, Z. Kovijaníc Vukícevíc, G. Popivoda, On Zagreb indices and coindices. MATCH Communications in Mathematical and in Computer Chemistry 74, 5-16, (2015).
B. Furtula, I. Gutman, A forgotten topological index. Journal of mathematical chemistry 53(4), 1184-1190, (2015).
I. Gutman, Geometric approach to degree-based topological indices: Sombor indices. MATCH Commun. Math. Comput. Chem. 86(1), 11-16, (2021).
I. Gutman, Degree-based topological indices. Croatica chemica acta. 86(4), 351-361, (2013).
J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs. MATCH Commun. Math. Comput. Chem. 72(3), 603-616, (2014).
B. Zhou, Zagreb indices. MATCH Commun. Math. Comput. Chem. 52(1), 113-118, (2004).
S. Nikolíc, G. Kovacevíc, A. Milicevíc, N. Trinajstíc, The Zagreb indices 30 years after. Croatica chemica acta. 76(2), 113-124, (2003).
K. C. Das, A. S. Çevik, I. N. Cangul, Y. Shang, On sombor index. Symmetry 13(1), 1-12, (2021).
S. K. Vaidya, K. M. Popat, Energy of m-splitting and m-shadow graphs. Far East Journal of Mathematical Sciences 102(8), 1571-1578, (2017).
T. Reji, R. Ruby, Decomposition dimension of corona product of some classes of graphs. Proyecciones (Antofagasta) 41(5), 1239-1250, (2022).
A. Alhevaz, M. A. Baghipur, H. Ganie, Y. Shang, The generalized distance spectrum of the join of graphs. Symmetry 12(1), 1-9, (2020).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



