More on KG-Sombor Index of Graphs
Resumen
Topological indices are generally graph-invariant numerical properties that describe the topology of a graph. The KG-Sombor index, a vertex-edge version of the Sombor index, was recently defined as follows: $KG(G)=\sum\limits_{ue} \sqrt{d(u)^2+d(e)^2},$ where $\sum\limits_{ue}$
indicates summation over vertices $u \in V(G)$ and the edges $e \in E(G)$ that are incident to $u$. In this work, we obtained the effect of vertex and edge removal on KG-Sombor index. Also, characterized integer values of KG-Sombor index. Finally, computed a bound for the KG Sombor index of derived graphs, including the join of graphs, the m-splitting graph, the m-shadow graph, and the corona product of graphs.
Descargas
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



