Existence of Unique Stable Solutions for a system of the BVPs Involving the Caputo-Type Modification of Erd\'{e}lyi-Kober Fractional Derivative
Abstract
In this article, we investigate a coupled system of fractional differential equations involving the Caputo-type modification of the Erd\'{e}lyi-Kober fractional derivative. Using the Banach contraction principle, we establish the uniqueness of solutions. Furthermore, under appropriate assumptions, we apply the Leray-Schauder alternative fixed point theorem to prove the existence of at least one solution for the system. Additionally, we derive several results concerning Hyers-Ulam (H-U) stability. Finally, we provide an illustrative example to validate our findings.
Downloads
References
Integral Equations: Existence and Stability, de Gruyter, Berlin 2018.
\bibitem{2} Abbas S., Benchohra M. and N'Gu\'{e}r\'{e}kata G. M., Topics in Fractional Differential Equations, Springer, New York, 2012.
\bibitem{3} Abbas S., Benchohra M. and N'Gu\'{e}r\'{e}kata G. M., Advanced Fractional Differential and
Integral Equations, Nova Science Publishers, New York, 2015.
\bibitem{4}Al-Saqabi B. and Kiryakova V. S., Explicit solutions of fractional integral and differential
equations involving Erd\'{e}lyi-Kober operators, Appl. Math. Comput. 95(1) (1998), 1-13.
\bibitem{7}Benchohra M., Bouriah S. and Nieto J. J., Terminal value problem for differential equations
with HilferKatugampola fractional derivative, Symmetry 11 (2019), Art. No. 672.
\bibitem{11} Boumaaza M., Benchohra M. and Berhoun F., Nonlinear implicit Caputo type modification
of the Erd\'{e}lyi-Kober fractional differential equations with retarded and advanced arguments,
Panamer. Math. J. 30 (2020), 21-36.
\bibitem{12} Boumaaza M., Benchohra M. and Tun¸c C., Erd\'{e}lyi-Kober fractional differential inclusions
in Banach spaces with retarded and advanced arguments, Discuss. Math. Differ. Incl. Control
Optim. 40 (2020), 75-92.
\bibitem{BoSa}Boumaaza, M., Salim, A., Benchohra, M., On implicit boundary value problems with Caputo type modification of the Erd\'{e}lyi-Kober fractional differential equations. Acta Mathematica Universitatis Comenianae, 93(3) (2024), 157-169.
\bibitem{28} Luchko Y. and Trujillo J. J., Caputo-type modification of the Erd\'{e}lyi-Kober fractional derivative, Fract. Calc. Appl. Anal. 10(3) (2007), 249-267.
\bibitem{21} Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
\bibitem{Kat1}Katugampola U. N., A new approach to generalized fractional derivatives, Bull. Math. Anal.
Appl. 6(4) (2014), 1-15.
\bibitem{20} Heris A., Salim A., Benchohra M. and Karapinar E., Fractional partial random differential
equations with infinite delay, Results in Physics 37 (2022), Art. 105557
\bibitem{Kat} Katugampola U. N., New approach to a generalized fractional integral, Appl. Math. Comput.
218(3) (2011), 860-865.
\bibitem{30} Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999
\bibitem{35}Tarasov V. E., Fractional Dynamics Application of Fractional Calculus to Dynamics of
Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010
\bibitem{Ullah} Ullah, S., Shah, K., Sarwar, M., Hleili, M., Ali, A., Abdeljawad, T. On analysis of a system of non-homogenous boundary value problems using hausdorff derivative with exponential kernel. Journal of Applied Mathematics and Computing, (2024), 1-23.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



