Existence of Unique Stable Solutions for a system of the BVPs Involving the Caputo-Type Modification of Erd\'{e}lyi-Kober Fractional Derivative
Résumé
In this article, we investigate a coupled system of fractional differential equations involving the Caputo-type modification of the Erd\'{e}lyi-Kober fractional derivative. Using the Banach contraction principle, we establish the uniqueness of solutions. Furthermore, under appropriate assumptions, we apply the Leray-Schauder alternative fixed point theorem to prove the existence of at least one solution for the system. Additionally, we derive several results concerning Hyers-Ulam (H-U) stability. Finally, we provide an illustrative example to validate our findings.
Téléchargements
Références
Integral Equations: Existence and Stability, de Gruyter, Berlin 2018.
\bibitem{2} Abbas S., Benchohra M. and N'Gu\'{e}r\'{e}kata G. M., Topics in Fractional Differential Equations, Springer, New York, 2012.
\bibitem{3} Abbas S., Benchohra M. and N'Gu\'{e}r\'{e}kata G. M., Advanced Fractional Differential and
Integral Equations, Nova Science Publishers, New York, 2015.
\bibitem{4}Al-Saqabi B. and Kiryakova V. S., Explicit solutions of fractional integral and differential
equations involving Erd\'{e}lyi-Kober operators, Appl. Math. Comput. 95(1) (1998), 1-13.
\bibitem{7}Benchohra M., Bouriah S. and Nieto J. J., Terminal value problem for differential equations
with HilferKatugampola fractional derivative, Symmetry 11 (2019), Art. No. 672.
\bibitem{11} Boumaaza M., Benchohra M. and Berhoun F., Nonlinear implicit Caputo type modification
of the Erd\'{e}lyi-Kober fractional differential equations with retarded and advanced arguments,
Panamer. Math. J. 30 (2020), 21-36.
\bibitem{12} Boumaaza M., Benchohra M. and Tun¸c C., Erd\'{e}lyi-Kober fractional differential inclusions
in Banach spaces with retarded and advanced arguments, Discuss. Math. Differ. Incl. Control
Optim. 40 (2020), 75-92.
\bibitem{BoSa}Boumaaza, M., Salim, A., Benchohra, M., On implicit boundary value problems with Caputo type modification of the Erd\'{e}lyi-Kober fractional differential equations. Acta Mathematica Universitatis Comenianae, 93(3) (2024), 157-169.
\bibitem{28} Luchko Y. and Trujillo J. J., Caputo-type modification of the Erd\'{e}lyi-Kober fractional derivative, Fract. Calc. Appl. Anal. 10(3) (2007), 249-267.
\bibitem{21} Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
\bibitem{Kat1}Katugampola U. N., A new approach to generalized fractional derivatives, Bull. Math. Anal.
Appl. 6(4) (2014), 1-15.
\bibitem{20} Heris A., Salim A., Benchohra M. and Karapinar E., Fractional partial random differential
equations with infinite delay, Results in Physics 37 (2022), Art. 105557
\bibitem{Kat} Katugampola U. N., New approach to a generalized fractional integral, Appl. Math. Comput.
218(3) (2011), 860-865.
\bibitem{30} Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999
\bibitem{35}Tarasov V. E., Fractional Dynamics Application of Fractional Calculus to Dynamics of
Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010
\bibitem{Ullah} Ullah, S., Shah, K., Sarwar, M., Hleili, M., Ali, A., Abdeljawad, T. On analysis of a system of non-homogenous boundary value problems using hausdorff derivative with exponential kernel. Journal of Applied Mathematics and Computing, (2024), 1-23.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



