ON ANALYTIC FUNCTIONS SUBCLASS DEFINED BY DIFFERENTIAL OPERATOR
ON ANALYTIC FUNCTIONS SUBCLASS DEFINED BY D. O.
Abstract
In this work, we present a novel differential operator-defined a specific set of negative-coefficient analytic univalent functions. For this class, we get subordination results, integral means inequalities, extreme points, and coefficient inequalities.
Downloads
Download data is not yet available.
References
\bibitem{1a} E.Deniz and Y. Ozkan(2014) Subclasses of analytic functions defined by new differential operator, Acta.Uni.Apul.
40(2014), 85-95. doi:10.17114/j.aua.2014.40.07
\bibitem{1b} Libera,R.J., (1965), Some classes of regular univalent functions, Proc. Amer. Math. Soc.,
(16), 755-758.http://dx.doi.org/10.1090/S0002-9939-1965-0178131-2
\bibitem{1c} Littlewood, J.E.,(1925), On inequalities in theory of functions, Proc. London Math.
Soc.,(23),481-519. http://dx.doi.org/10.1112/plms/s2-23.1.481
\bibitem{1d} Murugusundaramoorthy, G. , (2012), Subordination results for spirallike functions associ-
ated with Hurwitz-Lerch zeta function , Integral Transforms and Special Function,
23(2), 97-103. doi:10.1080/10652469.2011.562501
\bibitem{1e} Silverman, H., (1975), Univalent functions with negative coefficients,Proc. Amer.
Math. Soc.,51(1), 109-116. http://doi.org/10.1090/S0002-9939-1975-0369678-0
\bibitem{1f} Wilf, H.S., (1961), Subordinating factor sequence for convex maps of the unit circle,
Proc. Amer. Math. Soc.,12, 689-693. http://doi.org/10.1090/S0002-9939-1961-0125214-5
40(2014), 85-95. doi:10.17114/j.aua.2014.40.07
\bibitem{1b} Libera,R.J., (1965), Some classes of regular univalent functions, Proc. Amer. Math. Soc.,
(16), 755-758.http://dx.doi.org/10.1090/S0002-9939-1965-0178131-2
\bibitem{1c} Littlewood, J.E.,(1925), On inequalities in theory of functions, Proc. London Math.
Soc.,(23),481-519. http://dx.doi.org/10.1112/plms/s2-23.1.481
\bibitem{1d} Murugusundaramoorthy, G. , (2012), Subordination results for spirallike functions associ-
ated with Hurwitz-Lerch zeta function , Integral Transforms and Special Function,
23(2), 97-103. doi:10.1080/10652469.2011.562501
\bibitem{1e} Silverman, H., (1975), Univalent functions with negative coefficients,Proc. Amer.
Math. Soc.,51(1), 109-116. http://doi.org/10.1090/S0002-9939-1975-0369678-0
\bibitem{1f} Wilf, H.S., (1961), Subordinating factor sequence for convex maps of the unit circle,
Proc. Amer. Math. Soc.,12, 689-693. http://doi.org/10.1090/S0002-9939-1961-0125214-5
Published
2025-10-08
Section
Mathematics and Computing - Innovations and Applications (ICMSC-2025)
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).