ON ANALYTIC FUNCTIONS SUBCLASS DEFINED BY DIFFERENTIAL OPERATOR
ON ANALYTIC FUNCTIONS SUBCLASS DEFINED BY D. O.
Resumo
In this work, we present a novel differential operator-defined a specific set of negative-coefficient analytic univalent functions. For this class, we get subordination results, integral means inequalities, extreme points, and coefficient inequalities.
Downloads
Não há dados estatísticos.
Referências
\bibitem{1a} E.Deniz and Y. Ozkan(2014) Subclasses of analytic functions defined by new differential operator, Acta.Uni.Apul.
40(2014), 85-95. doi:10.17114/j.aua.2014.40.07
\bibitem{1b} Libera,R.J., (1965), Some classes of regular univalent functions, Proc. Amer. Math. Soc.,
(16), 755-758.http://dx.doi.org/10.1090/S0002-9939-1965-0178131-2
\bibitem{1c} Littlewood, J.E.,(1925), On inequalities in theory of functions, Proc. London Math.
Soc.,(23),481-519. http://dx.doi.org/10.1112/plms/s2-23.1.481
\bibitem{1d} Murugusundaramoorthy, G. , (2012), Subordination results for spirallike functions associ-
ated with Hurwitz-Lerch zeta function , Integral Transforms and Special Function,
23(2), 97-103. doi:10.1080/10652469.2011.562501
\bibitem{1e} Silverman, H., (1975), Univalent functions with negative coefficients,Proc. Amer.
Math. Soc.,51(1), 109-116. http://doi.org/10.1090/S0002-9939-1975-0369678-0
\bibitem{1f} Wilf, H.S., (1961), Subordinating factor sequence for convex maps of the unit circle,
Proc. Amer. Math. Soc.,12, 689-693. http://doi.org/10.1090/S0002-9939-1961-0125214-5
40(2014), 85-95. doi:10.17114/j.aua.2014.40.07
\bibitem{1b} Libera,R.J., (1965), Some classes of regular univalent functions, Proc. Amer. Math. Soc.,
(16), 755-758.http://dx.doi.org/10.1090/S0002-9939-1965-0178131-2
\bibitem{1c} Littlewood, J.E.,(1925), On inequalities in theory of functions, Proc. London Math.
Soc.,(23),481-519. http://dx.doi.org/10.1112/plms/s2-23.1.481
\bibitem{1d} Murugusundaramoorthy, G. , (2012), Subordination results for spirallike functions associ-
ated with Hurwitz-Lerch zeta function , Integral Transforms and Special Function,
23(2), 97-103. doi:10.1080/10652469.2011.562501
\bibitem{1e} Silverman, H., (1975), Univalent functions with negative coefficients,Proc. Amer.
Math. Soc.,51(1), 109-116. http://doi.org/10.1090/S0002-9939-1975-0369678-0
\bibitem{1f} Wilf, H.S., (1961), Subordinating factor sequence for convex maps of the unit circle,
Proc. Amer. Math. Soc.,12, 689-693. http://doi.org/10.1090/S0002-9939-1961-0125214-5
Publicado
2025-10-08
Seção
Mathematics and Computing - Innovations and Applications (ICMSC-2025)
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).