ON ANALYTIC FUNCTIONS SUBCLASS DEFINED BY DIFFERENTIAL OPERATOR

ON ANALYTIC FUNCTIONS SUBCLASS DEFINED BY D. O.

  • b venkateswarlu
  • A. Shashikala
  • Dr Sujatha

Résumé

In this work, we present a novel differential operator-defined a specific set of negative-coefficient analytic univalent functions. For this class, we get subordination results, integral means inequalities, extreme points, and coefficient inequalities.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

\bibitem{1a} E.Deniz and Y. Ozkan(2014) Subclasses of analytic functions defined by new differential operator, Acta.Uni.Apul.
40(2014), 85-95. doi:10.17114/j.aua.2014.40.07


\bibitem{1b} Libera,R.J., (1965), Some classes of regular univalent functions, Proc. Amer. Math. Soc.,
(16), 755-758.http://dx.doi.org/10.1090/S0002-9939-1965-0178131-2


\bibitem{1c} Littlewood, J.E.,(1925), On inequalities in theory of functions, Proc. London Math.
Soc.,(23),481-519. http://dx.doi.org/10.1112/plms/s2-23.1.481

\bibitem{1d} Murugusundaramoorthy, G. , (2012), Subordination results for spirallike functions associ-
ated with Hurwitz-Lerch zeta function , Integral Transforms and Special Function,
23(2), 97-103. doi:10.1080/10652469.2011.562501


\bibitem{1e} Silverman, H., (1975), Univalent functions with negative coefficients,Proc. Amer.
Math. Soc.,51(1), 109-116. http://doi.org/10.1090/S0002-9939-1975-0369678-0

\bibitem{1f} Wilf, H.S., (1961), Subordinating factor sequence for convex maps of the unit circle,
Proc. Amer. Math. Soc.,12, 689-693. http://doi.org/10.1090/S0002-9939-1961-0125214-5
Publiée
2025-10-08
Rubrique
Mathematics and Computing - Innovations and Applications (ICMSC-2025)