The Generalized Non-absolute type of sequence spaces
Abstract
In this paper we introduce the notion of $\lambda_{mn}-\chi^{2}$ and $\Lambda^{2}$ sequences. Further, we introduce the spaces $\left[\chi^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)}$ and $\left[\Lambda^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)},$ which are of non-absolute type and we prove that these spaces are linearly isomorphic to the spaces $\chi^{2}$ and $\Lambda^{2},$ respectively. Moreover, we establish some inclusion relations between these spaces.Downloads
References
T. J. I’A. Bromwich, An introduction to the theory of infinite series, Macmillan and Co.Ltd. ,New York, (1965).
G. H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
F. Moricz, Extentions of the spaces c and c0 from single to double sequences, Acta. Math. Hung., 57(1-2), (1991), 129-136.
F. Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104, (1988), 283-294.
M. Basarir and O. Solancan, On some double sequence spaces, J. Indian Acad. Math., 21(2) (1999), 193-200.
B. C. Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.
A. Turkmenoglu, Matrix transformation between some classes of double sequences, J. Inst. Math. Comp. Sci. Math. Ser., 12(1), (1999), 23-31.
A. Gokhan and R. olak, The double sequence spaces cP2(p) and cPB 2 (p), Appl. Math. Comput., 157(2), (2004), 491-501.
A. Gokhan and R. olak, Double sequence spaces l12 , ibid., 160(1), (2005), 147-153.
M. Zeltser, Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), (2003), 223-231.
B. Altay and F.Baaar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1), (2005), 70-90.
F. Basar and Y.Sever, The space Lp of double sequences, Math. J. Okayama Univ, 51, (2009), 149-157.
N. Subramanian and U. K. Misra, The semi normed space defined by a double gai sequence of modulus function, Fasciculi Math., 46, (2010).
I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc, 100(1) (1986), 161-166.
J. Cannor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32(2), (1989), 194-198.
A. Pringsheim, Zurtheorie derzweifach unendlichen zahlenfolgen, Math. Ann., 53, (1900), 289-321.
H. J.Hamilton, Transformations of multiple sequences, Duke Math. J., 2, (1936), 29-60.
H. J.Hamilton, A Generalization of multiple sequences transformation, Duke Math. J., 4, (1938), 343-358.
H. J.Hamilton, Preservation of partial Limits in Multiple sequence transformations, Duke Math. J., 4, (1939), 293-297.
P. K. Kamthan and M. Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York , 1981.
J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
A. Wilansky, Summability through Functional Analysis, North-Holland Mathematical Studies, North-Holland Publishing, Amsterdam, Vol.85(1984).
P. Kostyrko, T. Salat and W. Wilczynski, I- convergence, Real Anal. Exchange, 26(2) (2000-2001), 669-686, MR 2002e:54002.
V. Kumar and K. Kumar, On the ideal convergence of sequences of fuzzy numbers, Inform. Sci., 178(24) (2008), 4670-4678.
V. Kumar , On I and I- convergence of double sequences, Mathematical communications, 12 (2007), 171-181.
B. Hazarika, On Fuzzy Real Valued I- Convergent Double Sequence Spaces, The Journal of Nonlinear Sciences and its Applications (in press).
B. Hazarika, On Fuzzy Real Valued I- Convergent Double Sequence Spaces defined by Musielak-Orlicz function, J. Intell. Fuzzy Systems, 25(1) (2013), 9-15, DOI: 10.3233/IFS- 2012-0609.
B. Hazarika, Lacunary difference ideal convergent sequence spaces of fuzzy numbers, J. Intell. Fuzzy Systems, 25(1) (2013), 157-166, DOI: 10.3233/IFS-2012-0622.
B. Hazarika, On s- uniform density and ideal convergent sequences of fuzzy real numbers, J. Intell. Fuzzy Systems, DOI: 10.3233/IFS-130769.
B. Hazarika, Fuzzy real valued lacunary I- convergent sequences, Applied Math. Letters, 25(3) (2012), 466-470.
B. Hazarika, Lacunary I- convergent sequence of fuzzy real numbers, The Pacific J. Sci. Techno., 10(2) (2009), 203-206.
B. Hazarika, On generalized difference ideal convergence in random 2-normed spaces, Filomat, 26(6) (2012), 1265-1274.
B. Hazarika, Some classes of ideal convergent difference sequence spaces of fuzzy numbers defined by Orlicz function, Fasciculi Mathematici, 52 (2014)(Accepted).
B. Hazarika, I- convergence and Summability in Topological Group, J. Informa. Math. Sci., 4(3) (2012), 269-283.
B. Hazarika, Classes of generalized difference ideal convergent sequence of fuzzy numbers, Annals of Fuzzy Math. and Inform., (in press).
B. Hazarika, On ideal convergent sequences in fuzzy normed linear spaces, Afrika Matematika, DOI: 10.1007/s13370-013-0168-0.
B. Hazarika and E.Savas, Some I- convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz functions, Math. Comp. Modell., 54(11-12) (2011), 2986-2998.
B. Hazarika, K. Tamang and B.K.Singh, Zweier Ideal Convergent Sequence Spaces Defined by Orlicz Function, The J. Math. and Computer Sci., (Accepted).
B. Hazarika and V.Kumar, Fuzzy real valued I- convergent double sequences in fuzzy normed spaces, J. Intell. Fuzzy Systems, (accepted).
B. C.Tripathy and B. Hazarika, I- convergent sequence spaces associated with multiplier sequences, Math. Ineq. Appl., 11(3) (2008), 543-548.
B. C.Tripathy and B. Hazarika, Paranorm I- convergent sequence spaces, Math. Slovaca, 59(4) (2009), 485-494.
B. C.Tripathy and B. Hazarika, Some I- convergent sequence spaces defined by Orlicz functions, Acta Math. Appl. Sinica, 27(1) (2011), 149-154.
B. Hazarika and A. Esi, On ideal convergent sequence spaces of fuzzy real numbers associated with multiplier sequences defined by sequence of Orlicz functions, Annals of Fuzzy Mathematics and Informatics, (in press).
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).