Epiconvergence method to a nonlinear value boundary problem with L^1 data

  • Jamal Messaho CRMEF de Meknes
Keywords: Nonlinear value boundary problem, epi-convergence method, L^1 data

Abstract

The aim of this work is to study the existence of solutions of a value boundary problem with L^1 data with truncation and epicon-vergence method.   

Downloads

Download data is not yet available.

Author Biography

Jamal Messaho, CRMEF de Meknes

Khenifra

     

References

H. Attouch, Variational Convergence for Functions and Operators, Pitman (London) 1984.

P. Bénilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre, J.L. Vazquez, An L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations, Annali Sc. Norm. Sup. Pisa, 22 (1995), 241-273.

L. Boccardo, Positive solutions for some quasilinear elliptic equations with natural growths, Atti Accad. Naz. Lincei 11 (2000), 31-39

L. Boccardo, L. Orsina, Existence results for Dirichlet problems in L1 via Minty’s lemma, Appl. Anal. 76 (2000), 309-317

H. Brezis, Analyse fonctionnelle, Théorie et Applications, Masson(1992).

B. Dacorognat; Direct Methods in Calculus of Variations. Applied Mathematical sciences, No. 78, Springer-Verlag, Berlin, 1989.

E. De Giorgi, Convergence problems for functions and operators. Proceedings of the International Congress on "Recent Methods in Nonlinear analysis", Rome 1978. De Giorgi, Mosco, Spagnolo Eds. Pitagora Editrice (Bologna) 1979.

Published
2015-06-01
Section
Articles