$\mu$-compactness with respect to a hereditary class

Resumen

We define and study the notion of compactness in generalized topological spaces with respect to a hereditary class: $\mu\mathcal{H}$-compact spaces.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

C. Carpintero, Universidad de Oriente

Departamento de Matemáticas

E. Rosas, Universidad de Oriente

Departamento de Matemáticas

Margot Salas-Brown, Universidad de Oriente

Departamento de Matemáticas

J. Sanabria, Universidad de Oriente

Departamento de Matemáticas

Citas

Abd El-Monsef M. E., Lashien E. F. and Nasef A. A., S-compactness via ideals, Tamkang Jour. of Math. 24 (1993), no. 4 431–443.

Császár Á.,

-Compact Spaces, Acta Math. Hungar. 87 (2000), Vol 1-2, 99–107.

Császár Á., Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351–357.

Császár Á., Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), Vol 1-2, 29–36.

Császár Á., Weak structures, Acta Math. Hungar. 131 (2011), Vol 1-2, 193–195

Dorsett Ch., Semi compactness, semi separation axioms, and product spaces, Bull. Malaysian Math. Soc. 2 4 (1981), 21–28.

Kim Y. K., Min W. K., On operations induced by hereditary classes on generalized topological spaces. Acta Math. Hungar. 137 (2012), no. 1-2, 130–138.

Kuratowski K., Topologies I, Warszawa, (1933).

Jyothis T. and Sunil J., µ-Compactness in Generalized Topological Spaces, Journal of Advanced Studies in Topology. 3, (2012), no. 3,18–22.

Mashhour A. S., Abd El-Monsef M.E., I.A. Hasanein and T. Noiri, Strongly compact spaces, Delta J. Sci. 8 (1) (1984), 30–46.

Mustafa J. M., µ-Semi Compcatness and µ-semi Lindelofness in generalized topological sppaces, International Journal of Pure and Applied Mathematics. 78, No. 4, (2012), 535–241.

Nasef A. A. and Noiri T., On -compact modulo an ideal, Far East J. Math. Sci. 6, No. 6, (1998), 857–865.

Nasef A. A., Some classes of compactness in terms of ideals, Soochow Journal of Mathematics. 27, No. 3, (2001), 343–352.

Newcomb R. L., Topologies Which Are Compact Modulo an Ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, (1967).

Rajamani M., Inthumathi V. and Ramesh R., Some new generalized topologies via hereditary classes, Bol. Soc. Parana. Mat. 30 (2012), no. 2, 71–77.

Xum GE. and Ying GE., µ-seaparations in generalized topological spaces, Appl Math. J Chinese Univ. 25 (2010), 243–252

Zahram A. M., El-Saady K. and Ghareeb A., Modification of weak structures via hereditary clases, Appl. Math. Letters. 25 (2012), 869–872.

Publicado
2015-09-03
Sección
Articles