Properties at potential blow-up times for Navier-Stokes

  • Jens Lorenz University of New Mexico
  • Paulo R. Zingano Universidade Federal do Rio Grande do Sul

Abstract

In this paper we consider the Cauchy problem for the 3D navier-Stokes equations for incompressible flows. The initial data are assume d to be smooth and rapidly decaying at infinity. A famous open problem is whether classical solution can develop singularities in finite time. Assuming the maximal interval of existence to be finite, we give a unified discussion of various known solution properties as time approaches the blow-up time.

Downloads

Download data is not yet available.

Author Biographies

Jens Lorenz, University of New Mexico
Department of Mathematics and Statistics
Paulo R. Zingano, Universidade Federal do Rio Grande do Sul
Departamento de Matemática Pura e Aplicada

References

Seregin G. A certain necessary condition of potential blow–up for Navier-Stokes equations. Comm Math Phys. 2012; 312: 833-845.

Tao T. Finite time blowup for an averaged three-dimensional Navier-Stokes equation. Submitted to J. Amer. Math. Soc.

Leray J. Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math. 1934; 63: 193-248.

Borel A, Henkin GM, Lax PD. Jean Leray (1906 - 1998). AMS Notices. 2000; 47: 350-359.

Fefferman CL. Existence and smoothness of the Navier–Stokes equations. Jaffe A, Wiles A, editors. In: The Millenium Prize Problems. Providence: American Mathematical Society. 2006; 57-70. (Freely available electronically at http://www.claymath.org/millenium/Navier-Stokes_Equations/NavierStokes.pdf.)

Browder FE. Mathematical challenges of the 21st century. AMS Notices. 2000; 47: 324.

Constantin P. Some open problems and research directions in the mathematical study of fluid dynamics. Engquist B, Schmid W, editors. In: Mathematics Unlimited — 2001 and Beyond. New York: Springer. 2001; 353-360.

Jackson A. Mathematical challenges of the 21st century: a Panorama of Mathematics. AMS Notices. 2000; 47: 1271-1273.

Smale S. Mathematical problems for the next century. Math Intellig. 1998; 20: 7-15.

Wiegner M. The Navier–Stokes equations — a neverending challenge? Jahresber Deutsch Math-Verein. 1999; 101: 1-25.

Benameur J. On the blow–up criterion of 3D Navier–Stokes equations. J Math Anal Appl. 2010; 371: 719-727.

Foias C, Temam R. Some analytic and geometric properties of the solutions of the Navier–Stokes equations. J Math Pures Appl. 1979; 58: 339-368.

Galdi GP. An introduction to the Navier–Stokes initial–boundary problem. Galdi GP, Heywood JG, Rannacher R, editors. In: Fundamental Directions in Mathematical Fluid Dynamics. Basel: Birkhäuser. 2000; 1-70.

Giga Y. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system. J Diff Eqs. 1986; 62: 186-212.

Heywood JG. Open problems in the theory of the Navier-Stokes equations for viscous incompressible flows. Heywood JG, Masuda K, Rautmann R, Solonnikov VA, editors. In: The Navier-Stokes Equations: Theory and Numerical Methods. Lecture Notes in Mathematics, vol. 1431. New York: Springer. 1990; 1-22.

Kato T. Strong Lp–solutions of the Navier–Stokes equations in IRm, with applications to weak solutions. Math Z. 1984; 187: 471-480.

Robinson JC, Sadowski W. A local smoothness criterion for solutions of the 3D Navier–Stokes equations. Submitted (2012).

Robinson JC, Sadowski W, Silva RP. Lower bounds on blow–up solutions of the three–dimensional Navier–Stokes equations in homogeneous Sobolev spaces. J Math Phys. 2012; 53: 1-16.

Serrin J. The initial value problem for the Navier–Stokes equations. Langer R, editor. In: Nonlinear Problems. Madison: University of Wisconsin Press. 1963; 69-98.

Beirão da Veiga H. A suficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations. J Math Fluid Mech. 2000; 2: 99-106.

Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm Pure Appl Math. 1982; 35: 771-831.

Constantin P, Fefferman C. Direction of vorticity and the problem of global regularity for the Navier–Stokes equations. Indiana Univ Math J. 1993; 42: 775-789.

Prodi G. A uniqueness theorem for the Navier–Stokes equations (Italian). Ann Mat Pura Appl. 1959; 48: 173-182.

Serrin J. On the interior regularity of weak solutions of the Navier–Stokes equations. Arch Rat Mech Anal. 1962; 9: 187-195.

Struwe M. On partial regularity results for the Navier-Stokes equations. Comm Pure Appl Math. 1988; 41: 437-458.

Frid H, Perepelitsa M. Partial Regularity of Solutions of the 3-D Incompressible Navier-Stokes Equations. Rio de Janeiro: IMPA. 2001.

Cannone M. Harmonic analysis tools for solving the incompressible Navier-Stokes equations. Friedlander S, Serre D, editors. In: Handbook of Mathematical Fluid Dynamics. Vol. 3. Amsterdam: North-Holland. 2004; 161-244.

Lemarie–Rieusset PG. Recent Developments in the Navier–Stokes Problem. London: Chapman & Hall/CRC. 2002.

Sohr H. The Navier–Stokes Equations: an Elementary Functional Analytic Approach. Basel: Birkhäuser. 2001.

Beale JT, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm Math Phys. 1984; 94: 61-66.

Chae D. Incompressible Euler equations: the blow–up problem and related results. Dafermos CM, Pokorny M, editors. In: Handbook of Differential Equations: Evolutionary Equations. Vol. IV. Amsterdam: Elsevier. 2008: 1-55.

Lopes Filho MC, Nussenzveig Lopes HJ, Zheng Y. Weak Solutions for the Equations of Incompressible and Inviscid Fluid Dynamics. Rio de Janeiro: IMPA. 1999.

Majda A. Smooth solutions for the equations of compressible and incompressible fluid flow. Beirão da Veiga H, editor. In: Fluid Dynamics: Varenna 1982. Lecture Notes in Mathematics, vol. 1047. Berlin: Springer. 1984: 75-126.

Marchioro C, Pulvirenti M. Mathematical Theory of Incompressible Nonviscous Fluids. New York: Springer. 1994.

Kreiss H-O, Lorenz J. Initial–Boundary Value Problems and the Navier–Stokes Equations. New York: Academic Press. 1989. (Reprinted in the series SIAM Classics in Applied Mathematics, vol. 47, 2004.)

Koch H, Tataru D. Well–posedness for the Navier–Stokes equations. Adv Math. 2001; 157: 22-35.

Heywood JG. The Navier-Stokes equations: On the existence, regularity, and decay of solutions. Indiana Univ Math J. 1980; 29: 639-681.

Constantin P, Foias C. Navier–Stokes Equations. Chicago: The University of Chicago Press. 1988.

Ladyzhenskaya OA. The Mathematical Theory of Viscous Incompressible Flows. New York: Gordon and Breach. 1969.

Masuda K. Weak solutions of the Navier–Stokes equations. Tohoku Math J. 1984; 36: 623-646.

Temam R. Navier–Stokes Equations. Amsterdam: North-Holland. 1977. (Reprinted with corrections by the American Mathematical Society, Providence, 2001.)

Weissler FB. The Navier–Stokes initial value problem in Lp. Arch Rat Mech Anal. 1981; 74: 219-230.

Heywood JG. Remarks on the possible global regularity of solutions of the three–dimensional Navier–Stokes equations. Galdi GP, Malek J, Necas J, editors. In: Progress in Theoretical and Computational Fluid Mechanics. Longman. 1994; 1-32.

Esauriaza L, Seregin G, Sverk V. On L3,8–solutions to the Navier–Stokes equations and backward uniqueness. Uspekhi Mat Nauk. 2003; 58: 3-44.

Kozono H, Sohr H. Remark on uniqueness of weak solutions to the Navier–Stokes equations. Analysis. 1996; 16: 255-271.

Montgomery–Smith S. Conditions implying regularity of the three–dimensional Navier–Stokes equation. Appl Math. 2005; 50: 451-464.

Bae H. Leray’s blow–up condition of the incompressible Navier–Stokes equations in IR3. Unpublished note. Davis: University of California. 2012.

Foias C, Guillope C, Temam R. New a priori estimates for Navier–Stokes equations in dimension 3. Comm Partial Diff Eqs. 1981; 6: 329-359.

Kreiss H-O, Hagstrom T, Lorenz J, Zingano PR. Decay in time of incompressible flows. J. Math. Fluid Mech. 2003; 5: 231-244.

Grafakos L. Classical Fourier Analysis. 2nd edn. New York: Springer. 2008.

Foias C, Manley O, Rosa R, Temam R. Navier–Stokes Equations and Turbulence. Cambridge: Cambridge University Press. 2004.

Galdi GP. An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. New York: Springer. 1994.

Stein E. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press. 1970.

Constantin P. Navier–Stokes equations and area of interfaces. Comm Math Physics. 1990; 129: 241-266.

Published
2016-03-20
Section
Articles