The characterization of generalized Jordan centralizers on algebras

  • Quanyuan Chen Jingdezhen Ceramic Institute
  • Xiaochun Fang Tongji University
  • Changjing Li Shandong Normal University

Résumé

In this paper, it is shown that if $\mathcal {A}$ is a CSL subalgebra of a von Neumann algebr
and $\phi$ is a continuous mapping on $\mathcal {A}$ such that $(m+n+k+l)\phi(A^{2})-(m\phi(A)A+nA\phi(A)+k\phi(I)A^2+l A^2 \phi(I))\in \mathbb{F}I $ for any $A\in \mathcal {A}$, where $\mathbb{F}$ is the real field or the complex field, then $\phi$ is a centralizer. It is also shown that if $\phi$ is an additive mapping on $\mathcal {A}$ such that $(m+n+k+l)\phi(A^{2})=m\phi(A)A+nA\phi(A)+k\phi(I)A^2+l A^2 \phi(I) $
for any $A\in\mathcal{A}$, then $\phi$ is a centralizer.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Xiaochun Fang, Tongji University
Department of Mathematics
Changjing Li, Shandong Normal University
Department of Mathematics
Publiée
2016-10-25
Rubrique
Research Articles