Multiplicity results for Kirchhoff type elliptic problems with Hardy potential
Keywords:
p-biharmonic type operators, Navier condition, Hardy potential, Variational methods, Critical point theory
Abstract
In this paper, we are concerned with the existence of solutions for fourth-order Kirchhoff type elliptic problems with Hardy potential. In fact, employing a consequence of the local minimum theorem due to Bonanno and mountain pass theorem we look into the existence results for the problem under algebraic conditions with the classical Ambrosetti-Rabinowitz (AR) condition on the nonlinear term. Furthermore, by combining two algebraic conditions on the nonlinear term using two consequences of the local minimum theorem due to Bonanno we ensure the existence of two solutions, applying the mountain pass theorem given by Pucci and Serrin we establish the existence of third solution for our problem.Downloads
Download data is not yet available.
Published
2019-03-10
Issue
Section
Articles
Copyright (c) 2019 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).