Binary relation for tripled fixed point theorem in metric spaces
Abstract
In this paper we present a new extension of tripled fixed point theorems in metric spaces endowed with a reflexive binary relation that is not necessarily neither transitive nor antisymmetric. The key feature in this tripled fixed point theorems is that the contractivity condition on the nonlinear map is only assumed to hold on elements that are comparable in the binary relation. Next on the basis of the tripled fixed point theorems, we prove the existence and uniqueness of positive definite solutions of a nonlinear matrix equation of type
Downloads
References
R.P. Agarwal, M. A. El-Gebeily and D. O’Regan, Generalized contractions in partially ordered metric spaces, Applicable Analysis 87, 109 - 116 (2008).
W. N. Anderson, T. D. Morley, G. E. Trapp, Ladder networks, fixed points and the geometric mean, Circuits Systems Signal Process., 3 , 259-268 (1983).
T. Ando, Limit of cascade iteration of matrices, Numer. Funct. Anal. Optim., 21, 579-589 (1980).
H. Aydi, A.Mujahid and M. Postolache, Coupled coincidence points for hybrid pair of mappings via mixed monotone property, J. Adv. Math. Studies 5(1), 118-126 (2012).
H. Aydi, Some coupled fixed point results on partial metric spaces, Int. J. Math. Math. Sci., 2011 Article ID 647091, 11 , 2011.
H. Aydi, B. Samet and C. Vetro, Coupled fixed point results in cone metric spaces for w-compatible mappings, Fixed Point Theory Appl. 2011, 27 (2011).
H. Aydi, B. Damjanovic, B. Samet and W. Shatanawi, Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Math. Comput. Model. 54, 2443-2450 (2011).
H. Aydi, W. Shatanawi and M. Postolache, Coupled fixed point results for (, )-weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl. 63, 298-309 (2012).
H. Aydi, E. Karapinar, and M. Postolache, Tripled coincidence point theorems for weak - contractions in partially ordered metric spaces, Fixed Point Theory & Applications 2012, 2012:44 doi:10.1186/1687-1812-2012-44.
S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundamenta Mathematicae, 3 133- 181, (1922).
V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74(15), 4889-4897 (2011).
M. Berzig, B. Samet, Solving systems of nonlinear matrix equations involving Lipshitzian mappings, Fixed Point Theory Appl., 2011 (2011), 10 pages. 3
M. Berzig, Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point theorem, Appl. Math. Lett., 25 (2012), 1638-1643. 1, 3
T.G. Bhaskar and V. Lakshmikantham , Fixed point theory in partially ordered metric spaces and applications, Non- linear Anal. 65, 1379 - 1393 (2006).
B. L. Buzbee, G. H. Golub, C. W. Nielson, On direct methods for solving Poisson’s equations, SIAM J. Numer. Anal., 7, 627-656 (1970).
Y. J. Cho, A. Gupta, E. Karapinar,P. Kumam, Tripled Best Proximity Point Theorem In Metric Spaces, Mathematical Inequalities & Applications, 16(4),11971216, 2013.
J. C. Engwerda, On the existence of a positive solution of the matrix equation X + AT X-1 A = I, Linear Algebra Appl., 194 , 91-108 (1993).
W. L. Green, E. Kamen, Stabilization of linear systems over a commutative normed algebra with applications to spatially distributed parameter dependent systems, SIAM J. Control Optim., 23, 1-18 (1985).
A. Gupta, An Application of Meir Keeler type tripled fixed point, International Journal of Advances In Applied Mathematics & Mechanics, 2(2),21-38, 2014.
A. Gupta, R. Narayan, R. N. Yadava, Tripled Fixed Point For Compatible Mappings In Partially Ordered Fuzzy Metric Spaces, The Journal of Fuzzy Mathematics, 22(3),565-580, 2014.
A. Gupta, R. Kushwaha, Tripled Common Fixed Point For Weak (μ, , ,)- Contractions In Partially Ordered Metric Spaces, Mathematical Theory & Modelling, 3(6),46-53 (2013).
A. Gupta, S.S.Rajput,P.S. Kourav, Coupled Best Proximity Point Theorem In Metric Spaces Dependent On ICS Mapping, Caribbean Journal of Science And Technology, 1(1),027-042, 2013.
A. Gupta, S.S. Rajput,P.S. Kaurav, Coupled Best Proximity Point Theorem In Metric Spaces, International Journal of Analysis & Applications, 4(2), 201-215,(2014).
A. Gupta, P.S. Kaurav , S.S. Rajput,, Some Contraction With Q-Function For Coupled Coincidence Point Theorem In Partially Ordered Quasi Metric Spaces International Journal of Mathematics And Its Applications, 2(1) 1-21, (2014).
A. Gupta, Weak Contractions For Coupled Fixed Point Theorem On G- Metric Space, African Journal Of Mathe- matics & Mathematical Science, 1(1), 1-12, 2013.
A. Gupta, Coupled Common Fixed Point Results In Ordered S-Metric Spaces, Asia Pacific Journal of Mathematics, 1(1)44-66, 2014.
W. Pusz, S. L. Woronowitz, Functional calculus for sequilinear forms and the purification map, Rep. Math. Phys., 8 , 159-170 (1975).
A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132, 1435-1443 (2003).
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).