Unified integrals involving product of multivariable polynomials and generalized Bessel functions

  • K. S. Nisar Prince Sattam bin Abdulaziz University Department of Mathematics
  • D. L. Suthar Wollo University Department of Mathematics
  • Sunil Dutt Purohit Rajasthan Technical University Department of HEAS (Mathematics)
  • Hafte Amsalu Wollo University College of Natural Sciences Department of Mathematics
Keywords: Multivariable polynomial function, Gamma function, generalized hypergeometric function, generalized Lauricella functions, Generalized Bessel function, Oberhettinger's integral formula

Abstract

The aim of this paper is to evaluate two integral formulas involving a finite product of the generalized Bessel function of the first kind and multivariable polynomial functions which results are expressed in terms of the generalized Lauricella functions. The major results presented here are of general character and easily reducible to unique and well-known integral formulae.

Downloads

Download data is not yet available.

References

P. Agarwal, D. Ritelli, A. Kilicman and S. Jain, Certain new unified integrals associated with the product of generalized Bessel functions, Commun. Numer. Anal., 2016 (2016), 50-56.

W.N. Bailey, Some infinite integrals involving Bessel functions, Proc. London Math. Soc., 40(2) (1936), 37-48.

A. Baricz, Generalized Bessel Functions of the First Kind, Springer-Verlag Berlin, Heidelberg, 2010.

Y.A. Brychkov, Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas, CRC Press, Boca Raton, FL, 2008.

J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc., 51(4) (2014), 995-1003.

J. Choi, D. Kumar and S.D. Purohit, Integral formulas involving a product of generalized Bessel functions of the first kind, Kyungpook Math. J., 56 (2016), 131-136.

A. Erd´elyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Mc Graw Hill Book Company, New York, Toronto, and London, II, 1953.

A. Gray and G.B. Mathews, A treatise on Bessel functions and their applications to physics. 2nd ed, prepared by A. Gray and T.M. Mac Robert. London: Macmillan, 1922.

N. Menaria, D. Baleanu and S.D. Purohit, Integral formulas involving product of general class of polynomials and generalized Bessel function, Sohag J. Math., 3(2) (2016), 77-81.

N. Menaria, R.K. Parmar, S.D. Purohit and K.S. Nisar, Certain unified integrals involving product of generalized k-Bessel function and gneral calss of polynomials, Honam Math. J., 39(3) (2017), 349-361.

K.S. Nisa, D.L. Suthar, S.D. Purohit and M. Aldhaifallah, Some unified integral associated with the generalized Struve function, Proc. Jangjeon Math. Soc., 20(2) (2017), 261-267.

F. Oberhettinger, Tables of Mellin Transforms, Springer-Verlag, New York-Heidelberg, 1974.

S.D. Purohit, D.L. Suthar and S.L. Kalla, Marichev-Saigo-Maeda fractional integration operators of the Bessel function, Matematiche (Catania), 67(1) (2012), 21-32.

H.M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Inc., Amsterdam, 2012.

H.M. Srivastava and M.C. Daoust, A note on the convergence of Kampe de Feriet’s double hypergeometric series, Math. Nachr., 53 (1985), 151-159.

H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis HorwoodLimited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.

D.L. Suthar and H. Amsalu, Certain integrals associated with the generalized Bessel-Maitland function, Appl. Appl. Math., 12(2) (2017), 1002-1016.

D.L. Suthar and H. Habenom, Integrals involving generalized Bessel-Maitland Function, J. Sci. Arts, 37(4) (2016), 357-362.

D.L. Suthar, S.D. Purohit and S. Agarwal, Class of Integrals Involving Generalized Hypergeometric Function and Srivastava’s Polynomials, Int. J. Appl. Comput. Math., 3(1) (2017), 1197-1203.

G.N. Watson, A Treatise on the Theory of Bessel Functions, Reprint of the second (1944) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995.

Published
2019-05-25
Section
Articles