Mapping properties of certain linear operator associated with hypergeometric functions
Abstract
The main object of the present paper is to nd some su¢ cient conditions in terms of hypergeometric inequalities so that the linear operator denoted by Ha;b;c : maps a certain subclass of close-to-convex function R (A;B) into subclasses of k-uniformly starlike and k-uniformly convex functions k ST () and k UCV() respectively. Further, we consider an integral operator and discuss its properties. Our results generalize some relevant results.
Downloads
References
M. K. Aouf, A. O. Mostafa and H. M. Zayed, Some constraints of hypergeometric functions to belong to certain subclasses of analytic functions, J. Egyptian Math. Soc., 24 (2016) 361-366.
R. Bharti, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamknag J. Math, 28(1) (1997) 17-32.
T. R. Caplinger and W. M. Causey, A class of univalent functions, Proc. Amer. Math. Soc., 39(1973) 357-361.
B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(1984) 737-745.
K. K. Dixit and S. K. Pal, On a class of univalent functions related to complex order, Indian J. Pure Appl. Math., 26(9) (1995) 889-896.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlarg, New York, Berlin, Heidelbeg, Tokyo (1983).
A. Gangadharan, T. N. Shammugam and H. M. Srivastava, Generalized hypergeometric functions associated with k-uniformly convex functions, Comput. Math. Appl., 44 (2002) 1515-1526.
A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991) 87-92.
Yu. E. Hohlov, Operators and operations in the class of univalent functions (in Russian), Izv.Vyss. Ucebn.Zave. Matematika , 10 (1978), 83-89.
S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math, 105 (1999) 327-336.
S. Kanas and A. Wisniowska, Conic regions and k-starlike functions, Rev. Roumaine Math. Pure. Appl, 45(2000) 647-657.
Y. S. Kim, M. A. Rakha and A. K. Rathie, Extensions of certain classical summation theorems for the series 2F1, 3F2 and 4F3 with applications in Ramanujan’s summation, Int. J. Math. Math. Sci., 2010, Art. ID 309503.
J. A. Kim and K. H. Shon, Mapping properties for convolutions invovling hypergeometric functions, Int. J. Math. Math. Sci., 17 (2003) 1083-1091.
W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57 (1992) 165-175.
S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math., No.225, Marcel Dekker, Inc. New York, 2000.
A. K. Mishra and T. Panigrahi, Class-mapping properties of the Hohlov operator, Bull. Korean Math. Soc., 48(1) (2011) 51-65.
K. S. Padmanabhan, On a certain class of functions whose derivatives have a positive real part in the unit disc, Ann. Polon. Math, 23 (1979) 73-81.
S. Ponnusamy and F. R¨onning, Starlikeness properties for convolutions involving hypergeometric series, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 52 (1998)(1) 141-155.
M. S. Robertson, On the theory of univalent functions, Ann. Math., 37(1936) 374-408.
F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc.,118 (1) (1993) 189-196.
S. Shamas, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci., 55 (2004) 2959-2961.
T. N. Shammugam, Hypergeometric functions in the geometric function theory, Appl. Math. Comput., 187 (2007) 433-444.
A. K. Sharma, S. Porwal and K. K. Dixit, Class mapping properties of convolutions involving certain univalent functions associated with hypergeometric functions, Electr. J. Math. Anal. Appl., 1(2) (2013), 326-333.
H. M. Srivastava and P. W. Karlson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Ltd., Chichester, Halsted Press (John Wiley and Sons, Inc.), New york, 1985.
H. Tang and G. T. Deng, Subordination and superordination preserving properties for a family of integral operators involving the Noor integral operator, J. Egyptian Math. Soc., 22(3) (2014) 352-361.
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).
Funding data
-
Council of Scientific and Industrial Research, India
Grant numbers 25(0278)/17/EMR-II