On composition operators of Fibonacci matrix and applications of Hausdorff measure of noncompactness

  • Bipan Hazarika Rajiv Gandhi University
  • Anupam Das Rajiv Gandhi University
  • Emrah Evren Kara Duzce University
  • Feyzi Basar Fatih University

Abstract

The aim of the paper is introduced the composition of the two infinite matrices $\Lambda=(\lambda_{nk})$ and $\widehat{F}=\left( f_{nk} \right).$ Further, we determine the $\alpha$-, $\beta$-, $\gamma$-duals of new spaces and also construct the basis for the space $\ell_{p}^{\lambda}(\widehat{F}).$ Additionally, we characterize some matrix classes on the spaces $\ell_{\infty}^{\lambda}(\widehat{F})$ and $\ell_{p}^{\lambda}(\widehat{F}).$ We also investigate some geometric properties concerning Banach-Saks type $p.$
Finally we characterize the subclasses $\mathcal{K}(X:Y)$ of compact operators by applying the Hausdorff measure of noncompactness, where $X\in\{\ell_{\infty}^{\lambda}(\widehat{F}),\ell_{p}^{\lambda}(\widehat{F})\}$ and $Y\in\{c_{0},c, \ell_{\infty}, \ell_{1}, bv\},$ and $1\leq p<\infty.$

Downloads

Download data is not yet available.

Author Biographies

Bipan Hazarika, Rajiv Gandhi University

Mathematics

Professor

Anupam Das, Rajiv Gandhi University

Mathematics 

Assistant Professor

Emrah Evren Kara, Duzce University

Mathematics

Professor 

Feyzi Basar, Fatih University

Mathematics

Professor 

References

A. Alotaibi, M. Mursaleen, B. AS. Alamri, S. A. Mohiuddine, Compact operators on some Fibonacci difference sequence spaces, J. Inequal. Appl. 2015(2015) 9 pages. DOI: https://doi.org/10.1186/s13660-015-0713-5

B. Altay, F. Basar, Certain topological properties and duals of the domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336 (2007), 632-645. DOI: https://doi.org/10.1016/j.jmaa.2007.03.007

J. Banas, K. Goebel, Measure of non-compactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60, Marcel Dekker, New York · Basel, 1980.

F. Basar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Anal. TMA 68 (2008), 273-287. DOI: https://doi.org/10.1016/j.na.2006.10.047

F. Basar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55 (1) (2003), 136-147. DOI: https://doi.org/10.1023/A:1025080820961

F. Basar, E. Malkowsky, The characterization of compact operators on spaces of strongly summable and bounded sequences, Appl. Math. Comput. 217 (12) (2011), 5199-5207. DOI: https://doi.org/10.1016/j.amc.2010.12.007

H. Capan, F. Basar, Domain of the double band matrix defined by Fibonacci numbers in the Maddox’s space ℓ(p), Electron. J. Math. Anal. Appl. 3 (2) (2015), 31–45.

A. Das, B. Hazarika, Some properties of generalized Fibonacci difference bounded and p-absolutely convergent sequences, Bol. Soc. Parana. Mat. 36(1)(2018), 37-50. DOI: https://doi.org/10.5269/bspm.v36i1.30960

A. Das, B. Hazarika, Matrix transformation of Fibonacci band matrix on generalized bv-space and its dual spaces, Bol. Soc. Parana. Mat. 36(3)(2018), 41-52. DOI: https://doi.org/10.5269/bspm.v36i3.32010

A. Das, B. Hazarika, Some new Fibonacci difference spaces of non-absolute type and compact operators, Linear Multilinear Algebra, 65(12)(2017), 2551-2573. DOI: https://doi.org/10.1080/03081087.2017.1278738

J. Diestel, Sequences and Series in Banach Spaces, vol. 92 (1984), Springer, New York, NY, USA. DOI: https://doi.org/10.1007/978-1-4612-5200-9

I. Djolovic, Compact operators on the spaces a r0(∆) and a rc(∆), J. Math. Anal. Appl. 318 (2) (2006), 658–666.

I. Djolovic, E. Malkowsky, A note on compact operators on matrix domains, J. Math. Anal. Appl. 340(1) (2008), 291–303. DOI: https://doi.org/10.1016/j.jmaa.2007.08.021

J. Garcıa-Falset, Stability and fixed points for nonexpansive mapping, Houst. J. Math. 20 (3) (1994), 495-506.

J. Garcıa-Falset, The fixed point property in Banach spaces with the NUS-property, J. Math. Anal. Appl. 215 (2) (1997), 532-542. DOI: https://doi.org/10.1006/jmaa.1997.5657

A. M. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rendiconti Circ. Mat. Palermo II 52 (1990) 177–191.

A. M. Jarrah, E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat 17 (2003), 59-78. DOI: https://doi.org/10.2298/FIL0317059J

E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl. 2013, 2013:38. DOI: https://doi.org/10.1186/1029-242X-2013-38

E. E. Kara and Merve Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear Multilinear Algebra, 64(11)(2016) 2208-2223. DOI: https://doi.org/10.1080/03081087.2016.1145626

E. E. Kara, M. Basarır, M. Mursaleen, Compactness of matrix operators on some sequence spaces derived by Fibonacci numbers, Kragujevac J. Math. 39(2)(2015) 217-230. DOI: https://doi.org/10.5937/KgJMath1502217K

E. E. Kara, S. Demiriz, Some new paranormed difference sequence spaces derived by Fibonacci numbers, Miskolc Math. Notes 16(2)(2015) 907-923. DOI: https://doi.org/10.18514/MMN.2015.1227

M. Kirisci, F. Basar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl. 60 (2010), 1229-1309. DOI: https://doi.org/10.1016/j.camwa.2010.06.010

H. Knaust, Orlicz sequence spaces of Banach-Saks type, Arch. Math. 59 (6) (1992), 562-565. DOI: https://doi.org/10.1007/BF01194848

T. Koshy, Fibonacci and Lucas Numbers with applications, Wiley, 2001. DOI: https://doi.org/10.1002/9781118033067

E. Malkowsky, Klassen von Matrixabbildungen in paranormierten FK-R¨aumen, Analysis (Munich) 7 (1987), 275-292. DOI: https://doi.org/10.1524/anly.1987.7.34.275

E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence spaces and measure of non-compactness, in: Zb. Rad. (Beogr.), vol. 9 (17), Matematicki institut SANU, Belgrade, 2000, pp. 143-234.

E. Malkowsky, V. Rakocevic, S. Zivkovic, Matrix transformations between the sequence spaces w p0(Λ), vp0(Λ), cp0(Λ), 1 < p < ∞, and BK spaces, Appl. Math. Comput. 147 (2004), 377-396. DOI: https://doi.org/10.1016/S0096-3003(02)00674-4

M. Mursaleen, Generalized spaces of difference sequences, J. Math. Anal. Appl. 203 (3) (1996), 738-745. DOI: https://doi.org/10.1006/jmaa.1996.0409

M. Mursaleen, V. Karakaya, H. Polat, N. S¸imsek, Measure of non-compactness of matrix operators on some difference sequence spaces of weighted means, Comput. Math. Appl. 62 (2011), 814-820. DOI: https://doi.org/10.1016/j.camwa.2011.06.011

M. Mursaleen, A.K. Noman, On some new sequence spaces of non-absolute type related to the spaces ℓp and ℓ∞ I, Filomat 25 (2) (2011), 33-51. DOI: https://doi.org/10.2298/FIL1102033M

M. Mursaleen, A.K. Gaur, A.H. Saifi, Some new sequence spaces and their duals and matrix transformations, Bull. Calcutta Math. Soc. 88 (3) (1996), 207-212.

M. Mursaleen, A.K. Noman, Compactness by the Hausdorff measure of non-compactness, Nonlinear Anal. TMA 73 (8)(2010), 2541-2557. DOI: https://doi.org/10.1016/j.na.2010.06.030

M. Mursaleen, A.K. Noman, On the spaces of λ-convergent and bounded sequences, Thai J. Math. 8 (2) (2010), 311-329.

V. Rakocevic, Measures of non-compactness and some applications, Filomat 12 (2) (1998), 87-120.

M. Stieglitz, H. Tietz, Matrix transformationen von Folgenraumen Eine Ergebnisubersicht, Math. Z. 154 (1977), 1-16. DOI: https://doi.org/10.1007/BF01215107

B. C. Tripathy, Matrix transformation between some classes of sequences, J. Math. Anal. Appl. 206(1997) 448-450. DOI: https://doi.org/10.1006/jmaa.1997.5236

O. Tug, F. Basar, On the domain of Norlund mean in the spaces of null and convergent sequences, TWMS J. Pure Appl. Math. 7 (1) (2016), 76–87.

O. Tug, F. Basar, On the spaces of Norlund almost null and Norlund almost convergent sequences, Filomat 30 (3) (2016), 773–783. DOI: https://doi.org/10.2298/FIL1603773T

A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, Amsterdam · New York · Oxford, 1984.

Published
2021-12-16
Section
Articles