$n$-absorbing and strongly $n$-absorbing second submodules
Abstract
In this paper, we introduce the concepts of $n$-absorbing and strongly $n$-absorbing second submodules as a dual notion of $n$-absorbing submodules of modules over a commutative ring and obtain some related results. In particular, we investigate some results concerning strongly 2-absorbing second submodules.Downloads
References
D. F. Anderson and. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39, 1646-1672, (2011). DOI: https://doi.org/10.1080/00927871003738998
H. Ansari-Toroghy and F. Farshadifar, Some generalizations of second submodules, Palestine Journal of Mathematics, 8 (2) (2019), 159–168.
H. Ansari-Toroghy and F. Farshadifar, Classical and strongly classical 2-absorbing second submodules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (1) (2020), 123-136. DOI: https://doi.org/10.31801/cfsuasmas.550201
H. Ansari-Toroghy and F. Farshadifar, 2-absorbing and strongly 2-absorbing secondary submodules of modules, Le Matematiche 72 (11), 123-135, (2017).
H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math. 11 (4), 1189–1201, (2007). DOI: https://doi.org/10.11650/twjm/1500404812
H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull. Iranian Math. Soc. 38 (4), 987-1005, (2012).
H. Ansari-Toroghy, and F. Farshadifar, On the dual notion of prime radicals of submodules, Asian Eur. J. Math. 6 (2), 1350024 (11 pages), (2013). DOI: https://doi.org/10.1142/S1793557113500241
H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq. 19 (Spec 1), 1109-1116, (2012). DOI: https://doi.org/10.1142/S1005386712000880
H. Ansari-Toroghy and F. Farshadifar, The dual notions of some generalizations of prime submodules, Comm. Algebra 39 (7)(2011), 2396-2416. DOI: https://doi.org/10.1080/00927872.2010.488684
H. Ansari-Toroghy, F. Farshadifar, and S. S. Pourmortazavi, On the P -interiors of submodules of Artinian modules, Hacet. J. Math. Stat. 45 (3), 675-682, (2016). DOI: https://doi.org/10.15672/HJMS.20164513104
A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417-429, (2007). DOI: https://doi.org/10.1017/S0004972700039344
A. Barnard, Multiplication modules, J. Algebra 71, 174-178, (1981). DOI: https://doi.org/10.1016/0021-8693(81)90112-5
M.P. Brodmann and R.Y. Sharp, Local cohomology an algebraic introduction with geometric applications, Cambridge Univercity Press, 1998. DOI: https://doi.org/10.1017/CBO9780511629204
S. Ceken, M. Alkan, and P.F. Smith, The dual notion of the prime radical of a module, J. Algebra 392, 265-275, (2013). DOI: https://doi.org/10.1016/j.jalgebra.2013.06.015
A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submoduels, Thai J. Math. 9 (3), 577–584, (2011).
A. Y. Darani and F. Soheilnia, On n-absorning submodules, Math. Commun. 17, 547-557, (2012).
J. Dauns, Prime submodules, J. Reine Angew. Math. 298, 156–181, (1978). DOI: https://doi.org/10.1515/crll.1978.298.156
M. K. Dubey and P. Aggarwal, On n-absorbing submodules of modules over commutative rings, Beitr. Algebra Geom. 57 (3), 679-690, (2016). DOI: https://doi.org/10.1007/s13366-015-0263-5
L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. 249, 121–145, (2006).
H. Matsumara, Commutative Ring Theory, Cambridge University Press, Cambridge 1986.
S. Moradi and A. Azizi, Weakly 2-absorbing submodules of modules, Turkish J. Math. 40 (2), 350-364, (2016). DOI: https://doi.org/10.3906/mat-1501-55
H. Mostafanasab, U. Tekir, and K.H. Oral, Classical 2-absorbing submodules of modules over commutative rings, Eur. J. Pure Appl. Math. 8 (3), 417-430, 2015.
H. Mostafanasab, E. Yetkin, U. Tekir and A. Yousefian Darani, On 2-absorbing primary submodules of modules over commutative rings, An. S¸t. Univ. Ovidius Constanta 24 (1), 335-351, 2016. DOI: https://doi.org/10.1515/auom-2016-0020
Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Collq. 19, 913-920, (2012). DOI: https://doi.org/10.1142/S1005386712000776
Sh. Payrovi and S. Babaei, On the 2-absorbing submodules, Iran. J. Math. Sci. Inform. 10 (1), 131-137, (2015).
S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno) 37, 273–278, (2001).
S. Yassemi, The dual notion of the cyclic modules, Kobe. J. Math. 15, 41–46, (1998).
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).