Simulations functions and Geraghty type results

Keywords: Geraghty type contraction mappings, common fixed point, point of coincidence, compatible mappings, simulation function.

Abstract

We concern this manuscript with Geraghty type contraction mappings via simulation functions and pull down some sufficient conditions for the existence and uniqueness of point of coincidence for several classes of mappings involving Geraghty functions in the setting of metric spaces. These findings touch up many of the existing results in the literature. Additionally, we elicit one of our main result by a non-trivial example and pose an interesting open problem for the enthusiastic readers.

Downloads

Download data is not yet available.

Author Biography

Lakshmi Kanta Dey, National Institute of Technology Durgapur

Assistant Professor

Department of Mathematics

References

M. Abbas and G. Jungck. Common fixed point results for noncommuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl., 341(1):416–420, 2008. DOI: https://doi.org/10.1016/j.jmaa.2007.09.070

M. Abbas, I. Zulfaqar, and S. Radenovic. Common fixed point of (ψ, β)-generalized contractive mappings in partially ordered metric spaces. Chin. J. Math. (N.Y.), 2014, 2014. Article ID 379049. DOI: https://doi.org/10.1155/2014/379049

A. H. Ansari, M. Berzig, and S. Chandok. Some fixed point theorems for (CAB)-contractive mappings and related results. Math. Morav., 19(2):97–112, 2015. DOI: https://doi.org/10.5937/MatMor1502097A

S. Banach. Sur les op´erations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math., 3:133–181, 1922. DOI: https://doi.org/10.4064/fm-3-1-133-181

A. Chanda, B. Damjanovi´c, and L. K. Dey. Fixed point results on θ-metric spaces via simulation functions. Filomat, 31(11):3365–3375, 2017. DOI: https://doi.org/10.2298/FIL1711365C

A. Chanda, L. K. Dey, and S. Radenovic. Simulation functions: a survey of recent results. Preprint.

A. Chanda, S. Mondal, L.K. Dey, and S. Karmakar. C∗-algebra-valued contractive mappings with its application to integral equations. Indian J. Math., 59(1):107–124, 2017.

S. Chandok. Some fixed point theorems for (α, β)-admissible Geraghty type contractive mappings and related results. Math. Sci., 9(3):127–135, 2015. DOI: https://doi.org/10.1007/s40096-015-0159-4

A. Fulga and A.M. Proca. Fixed points for ϕE-Geraghty contractions. J. Nonlinear Sci. Appl., 10(9):5125–5131, 2017. DOI: https://doi.org/10.22436/jnsa.010.09.48

M. Geraghty. On contractive mappings. Proc. Amer. Math. Soc., 40(2):604–608, 1973. DOI: https://doi.org/10.1090/S0002-9939-1973-0334176-5

G. Jungck. Compatible mappings and common fixed points. Int. J. Math. Math. Sci., 9(4):771–779, 1986. DOI: https://doi.org/10.1155/S0161171286000935

F. Khojasteh, S. Shukla, and S. Radenovi´c. A new approach to the study of fixed point theory for simulation functions. Filomat, 29(6):1189–1194, 2015. DOI: https://doi.org/10.2298/FIL1506189K

S. Komal, P. Kumam, and D. Gopal. Best proximity point for Z-contraction and Suzuki type Z-contraction mappings with an application to fractional calculus. Appl. Gen. Topol., 17(2):185–198, 2016. DOI: https://doi.org/10.4995/agt.2016.5660

P. Kumam, D. Gopal, and L. Budhiya. A new fixed point theorem under Suzuki type Zcontraction mappings. J. Math. Anal., 8(1):113–119, 2017.

C. Mongkolkeha, Y.J. Cho, and P. Kumam. Fixed point theorems for simulation functions in b-metric spaces via the wt-distance. Appl. Gen. Topol., 18(1):91–105, 2017. DOI: https://doi.org/10.4995/agt.2017.6322

A. Nastasi and P. Vetro. Fixed point results on metric and partial metric spaces via simulation functions. J. Nonlinear Sci. Appl., 8(6):1059–1069, 2015. DOI: https://doi.org/10.22436/jnsa.008.06.16

A. Nastasi, P. Vetro, and S. Radenovic. Some fixed point results via R-functions. Fixed Point Theory Appl., 2016:81, 2016. DOI: https://doi.org/10.1186/s13663-016-0572-x

M. Olgun, O. Bicer, and T. Alyildiz. A new aspect to Picard operators w ¨ ith simulation functions. Turkish J. Math., 40(4):832–837, 2016. DOI: https://doi.org/10.3906/mat-1505-26

S. Radenovi´c and S. Chandok. Simulation type functions and coincidence points. Filomat, 32(1):141-147, 2018. DOI: https://doi.org/10.2298/FIL1801141R

S. Radenovi´c, F. Vetro, and J. Vujakovic. An alternative and easy approach to fixed point results via simulation functions. Demonstr. Math., 50(1):223–230, 2017. DOI: https://doi.org/10.1515/dema-2017-0022

A.F. Roldan-Lopez-de-Hierro, E. Karapınar, C. Roldan-Lopez-de-Hierro, and J. Martinez Moreno. Coincidence point theorems on metric spaces via simulation functions. J. Comput. Appl. Math., 275:345–355, 2015. DOI: https://doi.org/10.1016/j.cam.2014.07.011

A.F. Roldan-Lopez-de-Hierro and B. Samet. ϕ-admissibility results via extended simulation functions. J. Fixed Point Theory Appl., 19(3):1997–2015, 2017. DOI: https://doi.org/10.1007/s11784-016-0385-x

Published
2020-10-07
Section
Research Articles