On connection between the order of a stationary one-dimensional dispersive equation and the growth of its convective term

Abstract

A boundary value problem for a stationary nonlinear dispersive equation of 2l+1 order with a convective term in the form u^ku_x, k\in N was considered on an interval (0,L). The existence, uniqueness and continuous dependence  of a regular solution as well as a relation between the order l and critical values of k of the equation have been established.

Downloads

Download data is not yet available.

References

Adams, R., Sobolev Spaces, Second Ed., Academic Press, Elsevier Science, (2003).

Araruna F. D., Capistriano-Filho R. A. and Doronin G. G., Energy decay for the modified Kawahara equation posed in a bounded domain, J. Math. Anal. Appl. 385, 743-756, (2012).

https://doi.org/10.1016/j.jmaa.2011.07.003

Biagioni, H. A. and Linares, F., On the Benney - Lin and Kawahara equations, J. Math. Anal. Appl. 211, 131-152, (1997).

https://doi.org/10.1006/jmaa.1997.5438

Bona, J. L., Sun, S. M. and Zhang, B. Y., Nonhomogeneous problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane, Ann. Inst. H. Poincar'e Anal. Non Lin'eaire 25, 1145-1185, (2008).

https://doi.org/10.1016/j.anihpc.2007.07.006

Bubnov, B. A., Solvability in the large of nonlinear boundary-value problems for the Korteweg-de Vries equation in a bounded domain, (Russian) Differentsial'nye uravneniya 16, No 1, 34-41, (1980), Engl. transl. in: Differ. Equations 16, 24-30, (1980).

Ceballos, J., Sepulveda, M. and Villagran, O., The Korteweg-de Vries- Kawahara equation in a bounded domain and some numerical results, Appl. Math. Comput. 190, 912-936, (2007).

https://doi.org/10.1016/j.amc.2007.01.107

Colin, T. and Ghidaglia, J. M., An initial-boundary-value problem for the Korteweg-de Vries Equation posed on a finite interval, Adv. Differential Equations 6, 1463-1492, (2001).

Cui, S. B., Deng, D. G. and Tao, S. P.,Global existence of solutions for the Cauchy problem of the Kawahara equation with L2 initial data, Acta Math. Sin. (Engl. Ser.) 22, 1457-1466, (2006).

https://doi.org/10.1007/s10114-005-0710-6

Doronin, G. G. and Larkin, N. A., Boundary value problems for the stationary Kawahara equation, Nonlinear Analysis. Series A: Theory, Methods & Applications, 1655-1665, (2007).

https://doi.org/10.1016/j.na.2007.07.005

Evans, L. C., Partial Differential Equations, American Mathematical Society, (1998).

Faminskii, A. V. and Larkin, N. A., Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval, Electron. J. Differ. Equations, 1-20, (2010).

Farah, L. G., Linares, F. and Pastor, A., The supercritical generalized KDV equation: global well-posedness in the energy space and below, Math. Res. Lett. 18, no. 02, 357-377, (2011).

https://doi.org/10.4310/MRL.2011.v18.n2.a13

Hasimoto, H., Water waves, Kagaku 40, 401-408, (1970 (Japanese)).

Isaza, P., Linares, F. and Ponce, G., Decay properties for solutions of fifth order nonlinear dispersive equations, J. Differ. Equats. 258, 764-795, (2015).

https://doi.org/10.1016/j.jde.2014.10.004

Jeffrey, A. and Kakutani, T., Weak nonlinear dispersive waves: a discussion centered around the Korteweg-de Vries equation, SIAM Review, vol 14 no 4, 582-643, (1972).

https://doi.org/10.1137/1014101

Jia, Y. and Huo, Z., Well-posedness for the fifth-order shallow water equations, Journal of Differential Equations 246, 2448-2467, (2009).

https://doi.org/10.1016/j.jde.2008.10.027

Kakutani, T. and Ono, H., Weak non linear hydromagnetic waves in a cold collision free plasma, J. Phys. Soc. Japan 26, 1305-1318, (1969).

https://doi.org/10.1143/JPSJ.26.1305

Kato, T., On the Cauchy problem for the (generalized) Korteweg-de Vries equations, Advances in Mathematics Suplementary Studies, Stud. Appl. Math. 8, 93-128, (1983).

Kawahara, T., Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan 33, 260-264, (1972).

https://doi.org/10.1143/JPSJ.33.260

Kenig, C. E., Ponce, G. and Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation and the contraction principle, Commun. Pure Appl. Math. 46 No 4, 527-620, (1993).

https://doi.org/10.1002/cpa.3160460405

Kenig, C. E., Ponce, G. and Vega, L., Higher -order nonlinear dispersive equations, Proc. Amer. Math. Soc. 122 (1), 157-166, (1994).

https://doi.org/10.1090/S0002-9939-1994-1195480-8

Khanal, N., Wu J. and Yuan, J-M., The Kawahara equation in weighted Sobolev spaces, Nonlinearity 21, 1489-1505, (2008).

https://doi.org/10.1088/0951-7715/21/7/007

Kuvshinov, R. V. and Faminskii, A. V., A mixed problem in a half-strip for the Kawahara equation, (Russian) Differ. Uravn. 45, N. 3, 391-402, (2009), translation in Differ. Equ. 45 N. 3, 404-415, (2009).

https://doi.org/10.1134/S0012266109030100

Ladyzhenskaya, O. A., Solonnikov, V. A. and Uraltseva, N. N., Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, Rhode Island, (1968).

Larkin, N. A.,Korteweg-de Vries and Kuramoto-Sivashinsky equations in bounded domains, J. Math. Anal. Appl. 297, 169-185, (2004).

https://doi.org/10.1016/j.jmaa.2004.04.053

Larkin, N. A., Correct initial boundary value problems for dispersive equations, J. Math. Anal. Appl. 344, 1079-1092, (2008).

https://doi.org/10.1016/j.jmaa.2008.03.055

Larkin, N. A. and Luchesi, J., Higher-order stationary dispersive equations on bounded intervals, Advances in Mathematical Physics, vol. 2018, Article ID 7874305, (2018). doi:10.1155/2018/7874305

https://doi.org/10.1155/2018/7874305

Larkin, N. A. and Sim˜oes, M. H., The Kawahara equation on bounded intervals and on a half-line, Nonlinear Analysis 127, 397-412, (2015).

https://doi.org/10.1016/j.na.2015.07.008

Linares, F. and Pazoto, A., On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping, Proc. Amer. Math. Soc. 135, 1515-1522, (2007).

https://doi.org/10.1090/S0002-9939-07-08810-7

Martel, Y. and Merle, F., Instability of solutions for the critical generalized Korteweg-de Vries equation, Geometrical and Funct. Analysis 11, 74-123, (2001).

https://doi.org/10.1007/PL00001673

Merle, F., Existence of blow up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14, 555-578, (2001).

https://doi.org/10.1090/S0894-0347-01-00369-1

Nirenberg, L., An extended interpolation inequality, Annali della Scuola Nomale Superiore di Pisa, Classe di Scienze 3a serie, tome 20, no 4, 733-737, (1966).

Nirenberg, L., On elliptic partial differential equations, Annali della Scuola Nomale Superiore di Pisa, Classe di Scienze 3a serie, tome 13, no 2, 115-162, (1959).

Pilod, D., On the Cauchy problem for higher-order nonlinear dispersive equations, Journal of Differential Equations 245, 2055-2077, (2008).

https://doi.org/10.1016/j.jde.2008.07.017

Saut, J. C., Sur quelques generalizations de l'equation de Korteweg- de Vries, J. Math. Pures Appl. 58, 21-61, (1979).

Tao, S. P. and Cui, S.B., The local and global existence of the solution of the Cauchy problem for the seven-order nonlinear equation, Acta Matematica Sinica 25 A , (4) 451-460, (2005).

Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis, Noth-Holland, Amsterdam, (1979).

Published
2020-10-09
Section
Articles

Funding data