On submanifolds of Sasakian statistical manifolds

Abstract

‎In this paper‎, ‎invariant and‎ ‎anti-invariant submanifolds of Sasakian statistical manifolds are studied‎. ‎Necessary and sufficient conditions are given for vanishing the dual connection in the normal bundle‎. ‎Moreover‎, ‎existence of a Kaehlerian structure on invariant hypersurfaces of Sasakian statistical manifolds are proved‎.

Downloads

Download data is not yet available.

References

Amari, S. and Nagaoka, H., Methods of information geometry. Transl. Math. Monogr. 191., Amer. Math. Soc. (2000).

Aydin, M.E., Mihai, A. and Mihai, I., Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature. Bull. Math. Sci. 7, 155—166, (2017). DOI: https://doi.org/10.1007/s13373-016-0086-1

Furuhata, H., Hypersurfaces in statistical manifolds. Diff. Geom. Appl. 27, 420–429, (2009). DOI: https://doi.org/10.1016/j.difgeo.2008.10.019

Furuhata, H., Hasegawa, I., Okuyama, Y., Sato, K. and Shahid, M. Sasakian statistical manifolds. J. Geom. Phys. 117, 179–186, (2017). DOI: https://doi.org/10.1016/j.geomphys.2017.03.010

Majhi, P and Ghosh G., Certain results on generalized (k, μ)-contact manifolds. Bol. Soc. Paran. Mat. 37, 131–142, (2019). DOI: https://doi.org/10.5269/bspm.v37i3.34703

Vos, P. W., Fundamental equations for statistical submanifolds with applications to the Bartlett correction. Ann. Inst. Statist. Math. 41, 429–450, (1989). DOI: https://doi.org/10.1007/BF00050660

Yano, K. and Kon, M., Structures on manifolds. World Scientific, (1984). DOI: https://doi.org/10.1142/0067

Published
2021-12-16
Section
Articles