Some results on generalized mean nonexpansive mapping in complete metric spaces
Abstract
In this paper, we obtain sufficient conditions for the existence of a unique fixed point of $T$- mean nonexpansive mapping and an integral type of $T$- mean nonexpansive mapping. We also obtain sufficient conditions for the existence of coincidence point and common fixed point for a Jungck-type mean nonexpansive mapping in the frame work of a complete metric space. Some examples of $T$-mean nonexpansive and Jungck-type mean nonexpansive mappings which are not mean nonexpansive mapping are given. The result obtained generalizes corresponding results in this direction in the literature.
Downloads
References
S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fundamenta Mathematicae, 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
A. Beiranvand, S. Moradi, M. Omid, and H. Pazandeh, Two fixed point theorems for special mappings, http://arxiv.org/abs/0903.1504.
A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (9) (2002), 531-536. https://doi.org/10.1155/S0161171202007524
L. Chen, L. Guo and D. Chen, Fixed point theorems of mean nonexpansive set-valued mappings in Banach spaces, J. Fixed Point Theory Appl. 19 (2017), 2129-2143. https://doi.org/10.1007/s11784-017-0401-9
P. N. Dutta and B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl. (2008), Art. ID 406368, 8 pp. https://doi.org/10.1155/2008/406368
C. Izuchukwu, G. C. Ugwunnadi, O.T. Mewomo, A. R. Khan and M. Abbas, Proximal-type algorithms for split minimization problem in p-uniformly convex metric space, Numerical Algorithms, (2018) (accepted, to appear), https://doi.org/10.1007/s11075-018-0633-9
C. Izuchukwu, H. A. Abass and O. T. Mewomo, Viscosity approximation method for solving minimization problem and fixed point problem for nonexpansive multivalued mapping in CAT(0) spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl., 11 (1) (2019), (to appear).
C. Izuchukwu, A. A. Akindele, K.O. Aremu, H. A. Abass and O.T, Mewomo Viscosity iterative techniques for approximating a common zero of monotone operators in a Hadamard space, Rendi. Circ. Mat. Palermo (2), 68 (2) (2019), (to appear), https://doi.org/10.1007/s12215-019-00415-2
C. Izuchukwu, K. O. Aremu, A. A. Akindele, O. T, Mewomo, A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space, Appl. Gen. Topol., 20 (1) (2019), 193-210. https://doi.org/10.4995/agt.2019.10635
G. Jungck,Commuting mappings and fixed points, Amer. Math. Monthly, 83 (4) (1976), 261-263. https://doi.org/10.1080/00029890.1976.11994093
G. Jungck and N. Hussain, Compatible maps and invariant approximations, J. Math. Anal. Appl. 325(2) (2007), 1003-1012. https://doi.org/10.1016/j.jmaa.2006.02.058
K. Goebel, A coincidence theorem, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. 16 (1968), 733-735.
R. Kannan, Some results on fixed point theorems, Bull. Calcutta Math. Soc. 10 (1968), 71-76.
M. S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc. 30 (1) (1984), 1-9. https://doi.org/10.1017/S0004972700001659
A. A. Mebawondu and O. T. Mewomo, Some convergence results for Jungck-AM iterative process in hyperbolic spaces, Aust. J. Math. Anal. Appl. 16 (2) (2019), (to appear).
S. Moradi, Kannan fixed point theorem on complete metric spaces and on generalized metric spaces depended on another function, arXiv:0903.1577v1 [math.FA].
J. Morales, E. Rojas, Some results on T-Zamfirescu operators, Revista Notas de Matematics, 5 (1)(2009), 64-71.
J. Morales, E. Rojas, Cone metric spaces and fixed point theorems of T-Kannan contractive mappings, Int. J. Math. Anal., 4 (4)(2010), 175-184.
J. Morales, E. Rojas,T-Zamfirescu and T-weak contraction mappings on cone metric spaces, arXiv:0909.1255v1 [math.FA].
P. P. Murthy, L. N. Mishra and U. D. Patel, n-tupled fixed point theorems for weak-contraction in partially ordered complete G-metric spaces, New Trends Math. Sci., 3 (4)(2015), 50-75. https://doi.org/10.18576/amisl/040305
W. Shatanawi and M. Postolache, Some fixed-point results for a G-weak contraction in G-metric spaces, Abstr. Appl. Anal. (2012), 1-19. https://doi.org/10.1155/2012/815870
C. X. Wu and L. J. Zhang, Fixed points for mean non-expansive mappings, Acta Mathematicae Applicatae Sinica, 23 (3),(2007), 489-494. https://doi.org/10.1007/s10255-007-0388-x
F. Xiaoming and W. Zhigang, Some fixed point theorems in generalized quasi-partial metric spaces, J. Nonlinear Sci. Appl., 9(4)(2016), 1658-1674. https://doi.org/10.22436/jnsa.009.04.22
Y. Yang and Y. Cui, Viscosity approximation methods for mean non-expansive mappings in Banach spaces, Appl. Math. Sci. (Ruse), 2 (13)(2008), 627-638.
S. Zhang, About fixed point theory for mean nonexpansive mapping in Banach spaces, J. Sichuan Normal Univ. Nat. Sci. V 2 (1975), 67-68.
J. Zhou and Y. Cui, Fixed point theorems for mean nonexpansive mappings in CAT (0) spaces, Numer. Funct. Anal. Optim. 36 (9)(2015), 1224-1238. https://doi.org/10.1080/01630563.2015.1060614
Z. Zuo, Fixed-point theorems for mean nonexpansive mappings in Banach spaces, In Abstract and Applied Analysis, (2014), 1-6. https://doi.org/10.1155/2014/746291
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).