Existence results for perturbed fourth-order Kirchhoff type elliptic problems with singular term
Abstract
Under appropriate growth conditions on the nonlinearity, the existence of multiple solutions for a perturbed
nonlocal fourth-order Kirchhoff-type problem involving the Hardy term:$$\Delta_p ^2 u-\big[M(\int_{\Omega}|\nabla u|^{p}dx)\big]^{p-1}\Delta_{p}u-\mu\frac{|u|^{p-2}u}{|x|^{2p}}= \lambda f(x,u),$$is established. Our main tools are based on variational methods and some critical points
theorems. We give some examples to illustrate the obtained results.
Downloads
References
C. O. Alve, F. J. S. A. Correa, T. F. Ma, Positive solutions for quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl, 49, 85-93, (2005). https://doi.org/10.1016/j.camwa.2005.01.008
A. Amrouss, F Moradi, M. Moussaoudi, Existence of solutions for fourth-order pdes with variable exponents. E. J. D. E, No. 153, pp. 1-13, (2009).
G. Autuori, F. Colasuonno and P. Pucci, On the existence of stationary solutions for higher-order p-Kirchhoff problems. Commun. Contemp. Math, 16, 1450002 [43 pages] (2014). https://doi.org/10.1142/S0219199714500023
G. Bonanno, Relations between the mountain pass theorem and local minima. Adv. Nonlinear Anal, 1, 205-220, (2012). https://doi.org/10.1515/anona-2012-0003
G. Bonanno, P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities. J. Differ. Equ. 244, 3031-3059, (2008). https://doi.org/10.1016/j.jde.2008.02.025
G. Bonanno, S. A. Marano, On the structure of the critical set of non-differentiable functionals with a weak compactness condition. Appl. Anal. 89, 1-10, (2010). https://doi.org/10.1080/00036810903397438
A. Cabada, J. A. Cid, L. Sanchez, Positivity and lower and upper solutions for fourth-order boundary value problems. Nonlinear Anal. TMA, 67, 1599-1612, (2007). https://doi.org/10.1016/j.na.2006.08.002
P. Candito and R. Livrea, Infinitely many solutions for a nonlinear Navier boundary value problem involving the p-biharmonic. Studia Univ. "Babe¸s-Bolyai", Mathematica, Volume LV, Number 4, December 2010.
P. Candito and G. Molica Bisci, Multiple solutions for a Navier boundary value problem involv- ing the p-biharmonic operator. Discrete and Continuous Dynamical Systems Series, (4), 741-751, (2012). https://doi.org/10.3934/dcdss.2012.5.741
P. Candito, L. Li and R. Livrea, Infinitely many solutions for a perturbed nonlinear Navier boundary value problem involving the p-biharmonic. Nonlinear Anal. TMA, 75, 6360-6369, (2012). https://doi.org/10.1016/j.na.2012.07.015
E. B. Davies, A. M. Hinz, Explicit constants for Rellich inequalities in Lp(Ω). Math. Z, 227, 511-523, (1998). https://doi.org/10.1007/PL00004389
X. Fan, Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal, 52, 1843-1852, (2003). https://doi.org/10.1016/S0362-546X(02)00150-5
M. Ferrara, S. Khademloo and S. Heidarkhani, Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems. Appl. Math. Comput, 234, 316-325, (2014). https://doi.org/10.1016/j.amc.2014.02.041
M. Ghergu and V. Radulescu, Singular elliptic problems. Bifurcation and Asymptotic Analysis Oxford Lecture Series in Mathematics and Its Applications, vol. 37, Oxford Univ. Press, (2008).
M. Ghergu and V. Radulescu, Sublinear Singular elliptic problems with tow parameters. J. Differ. Equ, 195, 520-536, (2003). https://doi.org/10.1016/S0022-0396(03)00105-0
J. R. Graef, S. Heidarkhani, L. Kong, Multiple solutions for a class of (p1, . . . , pn)-biharmonic systems. Commun. Pure Appl. Anal. (CPAA) 12, 1393-1406, (2013). https://doi.org/10.3934/cpaa.2013.12.1393
S. Heidarkhani, M. Ferrara, A. Salari and G. Caristi, Multiplicity results for p(x)-biharmonic equations with Navier boundary conditions. Complex Var. Elliptic Equ, 61, 1494-1516, (2016). https://doi.org/10.1080/17476933.2016.1182520
S. Heidarkhani, S. Khademloo and A. Solimaninia, Multiple solutions for a perturbed fourth-order Kirchhoff type elliptic problem. Portugal. Math. (N.S.), 71, Fasc. 1, 39-61, (2014). https://doi.org/10.4171/PM/1940
S. Heidarkhani, Y. Tian, C. L. Tang, Existence of three solutions for a class of (p1, . . . , pn)-biharmonic systems with Navier boundary conditions. Ann. Polon. Math, 104, 261-277, (2012). https://doi.org/10.4064/ap104-3-4
L. Kong, On a fourth order elliptic problem with p(x)-biharmonic operator. Appl. Math. Lett, 27, 21-25, (2014). https://doi.org/10.1016/j.aml.2013.08.007
A. C. Lazer and P.J. McKenna, Large amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev, 32, 537-578, (1990). https://doi.org/10.1137/1032120
L. Li, Two weak solutions for some singular fourth order elliptic problems, Electron. J. Qual. Theory Differ. Equ, 1, 1-9, (2016). https://doi.org/10.14232/ejqtde.2016.1.1
L. Li and C. L. Tang, Existence of three solutions for (p, q)-biharmonic systems, Nonlinear Anal. TMA, 73, 796-805, (2010). https://doi.org/10.1016/j.na.2010.04.018
C. Li, C.L. Tang, Three solutions for a Navier boundary value problem involving the p-biharmonic. Nonlinear Anal. TMA, 72, 1339-1347, (2010). https://doi.org/10.1016/j.na.2009.08.011
L. Liu and C. Chen, Infinitely many solutions for p-biharmonic equation with general potential and concave-convex nonlinearity in RN . Bound. Value Probl, 1, 1-9, (2016). https://doi.org/10.1186/s13661-015-0510-6
H. Liu and N. Su, Existence of three solutions for a p-biharmonic problem. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal, 15(3), 445-452, (2008).
X. Mingqi, G. Molica Bisci, G. Tian and B. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-laplacian. Nonlinearity, 29, 357-374, (2016). https://doi.org/10.1088/0951-7715/29/2/357
G. Molica Bisci and V. Radulescu, Applications of local linking to nonlocal Neumann problems. Commun. Contemp. Math, 17, 1450001 [17 pages], (2014). https://doi.org/10.1142/S0219199714500011
G. Molica Bisci and V. Radulescu, Mountain pass solutions for nonlocal equations. Annales AcademiæScientiarum FennicæMathematica, 39, 579-592, (2014). https://doi.org/10.5186/aasfm.2014.3921
G. Molica Bisci and D. Repovs, Multiple solutions of p-biharmonic equations with Navier boundary conditions. Complex Vari. Elliptic Equ, 59, 271-284, (2014). https://doi.org/10.1080/17476933.2012.734301
V. Radulescu, Combined effects in nonlinear Singular elliptic problems with convenction. Rev. Roum. Math. Pures Appl, 53, 543-553, (2008).
B. Ricceri, On an elliptic Kirchhoff-type problem depending an two parameters. J. Global Optim, 46, 543-549, (2010). https://doi.org/10.1007/s10898-009-9438-7
G. Talenti, Elliptic equations and rearrangements. Ann. Sc. Norm. Super Pisa Cl. Sci, 3, 697-718, (1976).
Y. Wang and Y. Shen, Nonlinear biharmonic equations with Hardy potential and critical parameter. J. Math. Anal. Appl, 355, 649-660, (2009). https://doi.org/10.1016/j.jmaa.2009.01.076
H. Xie and J. Wang, Infinitely many solutions for p-harmonic equation with singular term. J. Inequal. Appl, 2013, No9, 13pp, (2013). https://doi.org/10.1186/1029-242X-2013-9
Z. Xiu, L. Zhao, J. Chen and S. Li, Multiple solutions on a p-biharmonic equation with nonlocal term. Bound. Value Probl, 1, 154-164, (2016). https://doi.org/10.1186/s13661-016-0662-z
M. Xu and C. Bai, Existence of infinitely many solutions for perturbed Kirchhoff type elliptic problems with Hardy potential. Electron. J. Diff. Equ, Vol. 2015, No. 268, pp. 1-9, (2015).
E. Zeidler, Nonlinear functional analysis and its applications. Vol. II, III. Berlin-Heidelberg- New York 1985. https://doi.org/10.1007/978-1-4612-5020-3
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).