Multifractal dimensions for projections of measures

  • Bilel Selmi Faculty of Sciences of Monastir

Abstract

In this paper, we calculate the multifractal Hausdorff and packing dimensions of Borel probability measures and study their behaviors under orthogonal projections. In particular, we try through these results to improve the main result of M. Dai in \cite{D} about the multifractal analysis of a measure of multifractal exact dimension.

Downloads

Download data is not yet available.

References

N. Attia and B. Selmi. Regularities of multifractal Hewitt-Stromberg measures. Commun. Korean Math. Soc., 34 (2019), 213-230

N. Attia, B. Selmi and Ch. Souissi. Some density results of relative multifractal analysis. Chaos, Solitons & Fractals. 103 (2017), 1-11. https://doi.org/10.1016/j.chaos.2017.05.029

I. S. Baek. On deranged Cantor sets. Kyungpook Math. Journal. 38 (1998), 363-367.

I. S. Baek. Weak local dimension on deranged Cantor sets. Real Analysis Exchange. 26 (2001), 553-558. https://doi.org/10.2307/44154059

I. S. Baek. Multifractal by self-similar measures. J. Appl. Math. & Computing., 23 (2007), 497-503.

I. S. Baek. On multifractal of Cantor dust. Acta Mathematica Sinica, English Series. 25 (2009), 1175-1182. https://doi.org/10.1007/s10114-009-7111-1

A. Batakis and B. Testud. Multifractal analysis of inhomogeneous Bernoulli products. Journal of Statistical Physics. 142 (2011), 1105-1120. https://doi.org/10.1007/s10955-011-0147-5

F. Ben Nasr and J. Peyriere. Revisiting the multifractal analysis of measures. Revista Math. Ibro., 25 (2013), 315-328. https://doi.org/10.4171/RMI/721

F. Ben Nasr and I. Bhouri. Spectre multifractal de mesures borliennes sur Rd, C.R. Acad. Sci. Paris Ser. I Math., 325 (1997), 253-256. https://doi.org/10.1016/S0764-4442(97)83950-X

F. Ben Nasr, I. Bhouri and Y. Heurteaux. The validity of the multifractal formalism: results and examples. Adv. in Math., 165 (2002), 264-284. https://doi.org/10.1006/aima.2001.2025

A. Ben Mabrouk. A higher order multifractal formalism. Stat. Prob. Lett., 78 (2008), 1412-1421. https://doi.org/10.1016/j.spl.2007.12.010

J. Cole. Relative multifractal analysis. Chaos, Solitons & Fractals, 11: (2000), 2233-2250. https://doi.org/10.1016/S0960-0779(99)00143-5

M. F. Dai. Multifractal analysis of a measure of multifractal exact dimension. Nonlinear Analysis: Theory, Methods & Applications. 70 (2008), 1069-1079. https://doi.org/10.1016/j.na.2008.01.033

Z. Douzi and B. Selmi. Multifractal variation for projections of measures. Chaos, Solitons & Fractals. 91 (2016), 414-420. https://doi.org/10.1016/j.chaos.2016.06.026

Z. Douzi and B. Selmi. On the projections of mutual multifractal spectra. arXiv:1805.06866v1, (2018).

K. J. Falconer. Techniques in fractal geometry. Wiley. New York., (1997). https://doi.org/10.2307/2533585

K. J. Falconer and P. Mattila. The packing dimensions of projections and sections of measures. Math. Proc. Cambridge Philos. Soc., 119 (1996), 695-713. https://doi.org/10.1017/S0305004100074533

K. J. Falconer and T. C. O'Neil. Convolutions and the geometry of multifractal measures. Math. Nachr., 204 (1999), 61-82. https://doi.org/10.1002/mana.19992040105

A. H. Fan. Sur la dimension des mesures. Studia. Math., 111 (1994), 1-17. https://doi.org/10.4064/sm-111-1-1-17

A. H. Fan. On ergodicity and unidimensionality. Kyushu. J. Math., 48 (1994), 249-255. https://doi.org/10.2206/kyushujm.48.249

A. H. Fan, K. S. Lau and H. Rao. Relationships between different dimensios of a measures. Monatsh. Math., 135 (2002), 191-201. https://doi.org/10.1007/s006050200016

A. Farhat and A. Ben Mabrouk, A joint multifractal analysis of finitely many non Gibbs-Ahlfors type measures. viXra:1808.0576, (2018).

B. Testud. Etude d'une classe de mesures autosimilaires : calculs de dimensions et analyse multifractale. Th'ese. (2004).

Y. Heurteaux. Sur la comparaison des mesures avec les mesures de Hausdorff. C. R. Acad. Sci. Paris Ser. I Math., 321 (1995), 61-65.

Y. Heurteaux. Estimations de la dimension inf'erieure et de la dimension sup'erieure des mesures. Ann. Inst. H. Poincar'e Probab. Statist., 34 (1998), 309-338. https://doi.org/10.1016/S0246-0203(98)80014-9

Y. Heurteaux. Dimension of measures: the probabilistic approach. Publ. Mat., 51 (2007), 243-290. https://doi.org/10.5565/PUBLMAT_51207_01

J. Li. A note on multifractal packig dimension of measures. Anal. Theory Appl., 25 (2009), 147-153. https://doi.org/10.1007/s10496-009-0147-3

P. Mattila. The Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambrdige. (1995). https://doi.org/10.1017/CBO9780511623813

P. Mattila. Hausdorff dimension, orthogonal projections and intersections with planes. Annales Academiae Scientiarum Fennicae. Series A Mathematica. 1 (1975), 227-244. https://doi.org/10.5186/aasfm.1975.0110

M. Menceur, A. Ben Mabrouk and K. Betina. The multifractal formalism for measures, review and extension to mixed cases. Anal. Theory Appl., 32 (2016), 77-106. https://doi.org/10.4208/ata.2016.v32.n4.1

M. Menceur and A. Ben Mabrouk. A mixed multifractal formalism for finitely many non Gibbs Frostman-like measures. arXiv:1804.09034v1, (2018).

T. C. O'Neil. The multifractal spectra of projected measures in Euclidean spaces. Chaos, Solitons & Fractals. 11 (2000), 901-921. https://doi.org/10.1016/S0960-0779(98)00256-2

L. Olsen. A multifractal formalism. Advances in Mathematics. 116 (1995), 82-196. https://doi.org/10.1006/aima.1995.1066

L. Olsen. Multifractal dimensions of product measures. Math. Proc. Camb. Phil. Soc., 120 (1996), 709-734. https://doi.org/10.1017/S0305004100001675

L. Olsen. Measurability of multifractal measure functions and multifractal dimension functions. Hiroshima Math. J., 29 (1999), 435-458. https://doi.org/10.32917/hmj/1206124851

L. Olsen. Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures. Math. Scand., 86 (2000), 109-129. https://doi.org/10.7146/math.scand.a-14284

P. Y. Pesin. Dimension type characteristics for invariant sets of dynamical systems. Russian Math: Surveys. 43 (1988), 111-151. https://doi.org/10.1070/RM1988v043n04ABEH001892

P. Y. Pesin. Dimension theory in dynamical systems, Contemporary views and applications. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, (1997). https://doi.org/10.7208/chicago/9780226662237.001.0001

S. Shen. Multifractal analysis of some inhomogeneous multinomial measures with distinct analytic Olsen's b and B functions. Journal of Statistical Physics. 159 (2015), 1216-1235. https://doi.org/10.1007/s10955-015-1223-z

B. Selmi. A note on the effect of projections on both measures and the generalization of q-dimension capacity. Probl. Anal. Issues Anal., 5 (23) (2016), 38-51. https://doi.org/10.15393/j3.art.2016.3290

B. Selmi. Measure of relative multifractal exact dimensions. Adv. Appl. Math. Sci., 17 (2018), 629-643.

B. Selmi. Some results about the regularities of multifractal measures. Korean J. Math. 26 (2018), 271-283

B. Selmi. On the strong regularity with the multifractal measures in a probability space. Analysis and Mathematical Physics (to appear).

B. Selmi and N. Yu. Svetova. On the projections of mutual Lq,t-spectrum. Probl. Anal. Issues Anal., 6 (24) (2017), 94-108. https://doi.org/10.15393/j3.art.2017.4231

M. Tamashiro. Dimensions in a separable metric space. Kyushu. J. Math., 49 (1995), 143-162. https://doi.org/10.2206/kyushujm.49.143

M. Wu. The multifractal spectrum of some Moran measures. Sci. China. Ser. A Math., 48 (2005), 97-112. https://doi.org/10.1360/022004-10

M. Wu. The singularity spectrum f(α) of some Moran fractals. Monatsh Math., 144 (2005), 141-55. https://doi.org/10.1007/s00605-004-0254-3

M. Wu and J. Xiao. The singularity spectrum of some non-regularity moran fractals. Chaos, Solitons & Fractals. 44 (2011), 548-557. https://doi.org/10.1016/j.chaos.2011.05.002

J. Xiao and M. Wu. The multifractal dimension functions of homogeneous moran measure. Fractals. 16 (2008), 175-185. https://doi.org/10.1142/S0218348X08003892

Published
2021-12-17
Section
Articles