Galerkin finite element method for a semi-linear parabolic equation with integral conditions
Abstract
The present paper is devoted to prove the existence and uniquennes of a weak solution of a semi-linear reaction-difusion equation with only integral terms in the boundaries by using the finite element method and a priory
estimate.
Downloads
References
N. Boudiba, Existence globale pour des syst'emes de r'eaction-diffusion avec controle de masse, ph.D.thesis, Universite de Rennes, France, 1999.
A. Bouziani, On a class of nonlinear reaction-Diffusion systems with nonlocal boudary conditions, A analysis 2004;9(2004) 793-813. https://doi.org/10.1155/S1085337504311061
A. Bouziani, Mixed problem with bouandary integral conditions for a certain parabolic equation, J. Appl. Math. Stochatic. Anal.9(1996) , no,323-330. https://doi.org/10.1155/S1048953396000305
A. Bouziani, Mixed problems with bouandary integral conditionsfor certain partial differantial equations, ph.D thesis, constantine.
A. Bouziani, on a class of parabolic equation with a non local bouandary conditions , Acad. Roy.Belg. Bull. CI. .Sci.30(2002) , no, 1-6, 61-77. https://doi.org/10.3406/barb.1999.27977
A. Bouziani, On the solvability of parabolic and hyperbolic problems with a boudary integral condition, Int. J. Math. Math. Sci.31(2002), no4, 201-213. https://doi.org/10.1155/S0161171202005860
M. Dehghan, A finite difference method for a non-local boudary value problem for two dimensional heat equation, Appl. Math. Comput. 112(2000), no.1,133-142. https://doi.org/10.1016/S0096-3003(99)00055-7
M. Dehghan, Fully explicit finite-differencemethod for two-dimentional diffusion with an integral condition, nonlinear Anal.48 (2002), no.5,637,650. https://doi.org/10.1016/S0362-546X(00)00172-3
M. Dehghan, Fully explicit finite-difference methods for two-dimentional diffusion with an integral condition, Nonlinear Anal.48(2002), no.5,637-650. https://doi.org/10.1016/S0362-546X(00)00172-3
S. L. Hollis, R. H. Martin Jr, and M. Pierre, Global existence and boudeness in reaction-diffusion systems, Siam J. Math. Anal. 18 (1987), no3,744-761. https://doi.org/10.1137/0518057
S. L. Hollis and J. Morgan, Interior estimates for a class of reaction-diffusion systems from L1 a priori estimates in Mathematics, vol; 80,BSBB.G.Teubner Verlagsgesellschaft, Leipzig, 1985.
R. H. Martin Jr. and M. Pierre, Nonlinear reaction-diffusion systems, Nonlinear Equations in the applied sciences(W.F.Ames, C.Rogers, and Kapell, eds), Math, sci.Engrg, vol.185, Academic Pres s, Massachusetts, 1992, pp.363-398. https://doi.org/10.1016/S0076-5392(08)62804-0
B. Nur-eddin and N. I. Yurchuk, A mixed problem with an integral condition for a parabolic equations with a Bessel operator, Differ. Uravn.27(1991), no. 12, 2094-2098.
C. V. Pao, Dynamics of reaction-diffusion equations with nonlocal boudary conditions, Quart Appl. Math.53 (1995), no1, 173-186. https://doi.org/10.1090/qam/1315454
C. V. Pao, Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boudary conditions, J. Comput. Appl. Math. 88(1998), no.1, 225-238. https://doi.org/10.1016/S0377-0427(97)00215-X
C. V. Pao, Numerical solutions of reaction-diffusion equations with nonlocal boudary conditions, J. Comput. Appl. Math. 136(2001), no.1-2, 227-243. https://doi.org/10.1016/S0377-0427(00)00614-2
N. I. Yurchuk, Amixed problem with an integral condition for some parablic equations, Differ. Urvan.22 (1986) no.12,21117-2126.
T-E Oussaeif and A. Bouziani, A priori estimates for weak solution for a time-fractional nonlinear reaction-diffusion equations with an integral condition, Chaos, Solitons & Fractals 103, 79-89 https://doi.org/10.1016/j.chaos.2017.05.035
E. DiBenedetto, M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J. 30 (1981) 821-854. https://doi.org/10.1512/iumj.1981.30.30062
E. DiBenedetto, R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal. 12 (1981) 731-751. https://doi.org/10.1137/0512062
B. D. Coleman, R. J. Duffin, V. J. Mizel, Instability, uniqueness and non-existence theorems for the equation ut = uxx - uxtx on a strip, Arch. Rational Mech. Anal. 19 (1965) 100-116. https://doi.org/10.1007/BF00282277
A. Bouziani, Solvability of nonlinear pseudoparabolic equation with nonlocal boundary condition, Nonlinear Anal. 55 (2003) 883-904. https://doi.org/10.1016/j.na.2003.07.011
R. E. Showalter, T. W. Ting, Pseudo-parabolic partial differential operators, SIAM J. Math. Anal. 1 (1970) 1-26. https://doi.org/10.1137/0501001
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).