Fixed point theorems for modified generalized F-contraction in G-metric spaces
Abstract
In this paper, we introduce new notions of generalized F-contractions of type(S) and type(M) in G-metric spaces. Some common fixed point theorems are proved using these notions. A suitable example is also provided to support our results.
Downloads
References
Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundamenta Mathematicae 3, 133-181,(1922). https://doi.org/10.4064/fm-3-1-133-181
Dung, N. V. and Hang, V. L., A fixed point theorem for generalized F-contractions on complete metric spaces, Vietnam J. Math. 43, 743-753, (2015). https://doi.org/10.1007/s10013-015-0123-5
Mustafa, Z. and Sims, B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2), 289-297, (2006).
Piri, H. and Kumam, P., Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 2014, Article ID 210, 1-13, (2014). https://doi.org/10.1186/1687-1812-2014-210
Piri, H. and Kumam P., Wardowski type fixed point theorems in complete metric spaces, Fixed Point Theory Appl. 45, 1-12, (2016). https://doi.org/10.1186/s13663-016-0529-0
Wardowski, D., Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012, Article ID 94, 1-6, (2012). https://doi.org/10.1186/1687-1812-2012-94
Wardowski, D. and Dung, N. V., Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math. XLVII, 146-155, (2014). https://doi.org/10.2478/dema-2014-0012
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).