Some results on the existence of weak periodic solutions for quasilinear parabolic systems with L1 data

  • Abderrahim Charkaoui Faculty of Science and Technology of Marrakech
  • Ghada Kouadri Faculty of Science and Technology And Sciences of the Matter
  • Nour Eddine Alaa Faculty of Science and Technology of Marrakech

Abstract

The aim of this paper is to prove the existence of weak periodic solution and super solution for M×M reaction diffusion system with L1 data and nonlinearity on the gradient. The existence is proved by the technique of sub and super solution and Schauder fixed point theorem.

Downloads

Download data is not yet available.

Author Biographies

Abderrahim Charkaoui, Faculty of Science and Technology of Marrakech

Department of Mathematics

Ghada Kouadri, Faculty of Science and Technology And Sciences of the Matter

Departement of Mathematics and Computers

Nour Eddine Alaa, Faculty of Science and Technology of Marrakech

Department of Mathematics

References

N.Alaa and M. Pierre, Weak solutions for some quasi-linear elliptic equations with data measures, SIAM J. Math. Anal. 24 (1993), 23-35. https://doi.org/10.1137/0524002

N. Alaa and I. Mounir, Global existence for some quasilinear parabolic Reaction-Diffusion systems with mass control and critical growth with respect to the gradient, Journal of Mathematical Analysis and Application 253, 532-557, 2001. https://doi.org/10.1006/jmaa.2000.7163

N. Alaa and M. Iguernane, Weak periodic solutions of some quasilinear parabolic equations with data measure, J. of Inequalities in Pure and Applied Mathematics 3 (2002), no. 3, Article 46.

N. Alaa, J. R. Roche, Theoretical and numerical analysis of a class of nonlinear elliptic equations. Mediterr. J. Math, 2,(2005), 327-344. https://doi.org/10.1007/s00009-005-0048-4

N. Alaa, S. Mesbahi, Existence result for triangular Reaction-Diffusion systems with L 1 data and critical growth with respect to the gradient, Mediterr. J. Math. 10 (2013), 255-275. https://doi.org/10.1007/s00009-012-0238-9

H. Amann, Periodic solutions of semilinear parabolic equations, Nonlinear Analysis, Academic Press, New York, 1978, pp. 1-29. https://doi.org/10.1016/B978-0-12-165550-1.50007-0

H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math, 45 (1983), pp. 225-254. https://doi.org/10.1007/BF02774019

M. Badii, Periodic solutions for a nonlinear parabolic equation with nonlinear boundary conditions, Rend. Sem. Mat. Univ. Pol. Torino 67 (2009), no. 3, 341-349.

M. Badii, J. I. Diaz, On the time periodic free boundary associated to some nonlinear parabolic equations. Boundary Value Problems. Boundary Value Problems, Volume 2010. https://doi.org/10.1155/2010/147301

D. W. Bange, Periodic Solution of a Quasilinear Parabolic Differential Equation, J. Differential Equation, 17 (1975), pp. 61-72. https://doi.org/10.1016/0022-0396(75)90034-0

P. Baras, J. C. Hassan, and L. Veron, Compacite de l'operateur definissant la solution d'une equation non homogene, C. R. Acad. Sci. Paris Sere. A 284, 799-802, 1977.

P. Baras and M. Pierre, Problemes paraboliques semi-lineaires avec donnees mesures. Applicable Analysis, (1984), Vol. 18, 111-149. https://doi.org/10.1080/00036818408839514

L. Boccardo, F. Murat and J. P. Puel, Existence results for some quasilinear parabolic equations. Nonlinear Analysis Theory Method and Applications 13 (1989), 373-392. https://doi.org/10.1016/0362-546X(89)90045-X

J. L. Boldrini, J. Crema, On forced periodic solutions of superlinear quasi-parabolic problems, Electron. J. Differential Equations, 1998 14 (1998), pp. 1-18.

N. Boudiba, Existence globale pour des systemes de reaction-diffusion paraboliques quasilineaires, These de troisieme cycle, Universite des sciences et de la technologie Houari Boumediene d'Alger, 1995.

R. Dautray and J. L. Lions. Analyse mat'ematique et calcul num'erique pour les sciences et les techniques, volume 8. Masson, 1988.

A. Dall'Aglio-L. Orsina, Nonlinear Parabolic Equations with Naturel Growth Conditions and L1 Data, Nonlinear Analysis, 27 (1996), pp. 59-73. https://doi.org/10.1016/0362-546X(94)00363-M

J. Deuel and P. Hess, Nonlinear Parabolic Boundary Value Problems with Upper and Lower Solutions, Israel Journal of Mathematics. Vol. 29, N◦1, (1978). https://doi.org/10.1007/BF02760403

W. E. Fitzgibbon, J. Morgan and R. Sanders. Global existence and boundedness for class of inhomogeneous semilinear parabolic systems, Nonlinear Analysis. Theory methods and Applications 19 (1992), no. 9, 885-899. https://doi.org/10.1016/0362-546X(92)90057-L

P. Hess, Periodic-Parabolic Boundary Value Problem and Positivity, Pitman Res. Notes Math Ser. 247. New York: Longman Scientifc and Technical, 1991.

Ju. S. Kolesov, Periodic solutions of quasilinear parabolic equations of second order, Trans. Moscow Math. Soc. 21. 1970, 114-146.

O. A. Ladyzhenskaya, V. A. Solonikov, and N. N. Ural'ceva, Linear and Quasi Linear Equations of Parabolic Type, Translation on Mathematical Monographs, Vol. 23, Amer. Math. Soc., Providence, 1968.

J. L. Lions, Quelques m'ethodes de resolution de problemes aux limites non lineaires, Dunod, Gauthier-Villars, Paris(1969).

C. V. Pao, Periodic solutions of parabolic systems with nonlinear boundary conditions, J. Math Anal. App, 234 (1999), 695-716. https://doi.org/10.1006/jmaa.1999.6412

M. Pierre, Global existence in reaction-diffusion systems with dissipation of mass, a survey, to appear in Milan Journal of Mathematics.

A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Annali di Mathematica pura ed applicata IV, Vol. 1989, 143-172. https://doi.org/10.1007/BF02505907

F. Rothe, Global solutions of reaction-diffusion systems, lecture notes in Math 1072, Spring Verlage(1984). https://doi.org/10.1007/BFb0099278

Published
2021-12-18
Section
Articles