Existence of a renormalized solution of nonlinear parabolic equations with general measure data
Abstract
In this paper we prove the existence of a renormalized solution for nonlinear parabolic equations of the type:
$$\displaystyle{\partial b(x,u)
\over
\partial t} - {\rm div}\Big(a(x,t,\nabla u)\Big)=\mu\qquad \text{in}\ \Omega\times (0,T),$$ where the right hand
side is a general measure, $b(x,u)$ is an
unbounded function of $u$ and $- {\rm div}(a(x,t,\nabla u))$
is a Leray--Lions type operator with growth $|\nabla u|^{p-1}$ in
$\nabla u$.
Downloads
References
Akdim, Y. Bennouna, J. Mekkour, M. and Redwane, H., Strongly nonlinear parabolic inequality in Orlicz spaces via a sequence of penalized equations, Afr. Mat. 26, no. 7-8, 1669-1695, (2015). https://doi.org/10.1007/s13370-014-0309-0
Akdim, Y. Bennouna, J. Mekkour, M and Redwane, H., Parabolic equations with measure data and three unbounded nonlinearities in weighted Sobolev spaces, Nonlinear Dyn. Syst. Theory 15, no. 2, 107-126, (2015).
Benilan, P. Boccardo, L. Gallouet, T. Gariepy, R. Pierre, M. and Vazquez, J., An L1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, 22, 241-273, (1995).
Blanchard, D., Truncation and monotonicity methods for parabolic equations equations, Nonlinear Anal., 21, 725-743, (1993). https://doi.org/10.1016/0362-546X(93)90120-H
Blanchard, D. and Francfort, G., A few results on a class of degenerate parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 18, 213-249, (1993).
Blanchard, D. and Murat, F., Renormalized solutions of nonlinear parabolic problems with L1 data, Existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect., A127, 1137-1152, (1997). https://doi.org/10.1017/S0308210500026986
Blanchard, D. Murat, F. and Redwane, H., Existence et unicite de la solution reormalisee d'un probleme parabolique assez general, C. R. Acad. Sci. Paris S'er., I329, 575-580, (1999). https://doi.org/10.1016/S0764-4442(00)80004-X
Blanchard, D. Murat, F. and Redwane, H., Existence and Uniqueness of a Renormalized Solution for a Fairly General Class of Nonlinear Parabolic Problems, J. Differential Equations, 177, 331-374, (2001). https://doi.org/10.1006/jdeq.2000.4013
Blanchard, D. and Porretta, A., Nonlinear parabolic equations with natural growth terms and measure initial data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, 583-622, (2001).
Blanchard, D. and Porretta, A., Stefan problems with nonlinear diffusion and convection, J. Diff. Equations, 210, 383-428, (2005). https://doi.org/10.1016/j.jde.2004.06.012
Blanchard, D. and Redwane, H., Renormalized solutions of nonlinear parabolic evolution problems, J. Math. Pure Appl., 77, 117-151, (1998). https://doi.org/10.1016/S0021-7824(98)80067-6
Blanchard, D. and Redwane, H. and Petitta, F., Renormalized solutions of nonlinear parabolic equations with diffuse measure data, Manuscripta Math., 141, 601-635, (2013). https://doi.org/10.1007/s00229-012-0585-7
Blanchard, D. and Redwane, H., Existence of a solution for a class of parabolic equations with three unbounded nonlinearities, natural growth terms and L 1 data, Arab J Math Sci 20(2), 157-176, (2014). https://doi.org/10.1016/j.ajmsc.2013.06.002
Boccardo, L, Dall'Aglio, A. Gallouet, T. and Orsina L., Nonlinear parabolic equations with measure data, J. Funct. Anal., 87, 49-169, (1997).
Boccardo, L. Gallouet, T. Orsina, L., Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincar'e Anal. Non Lin'eaire, 13 , 539-551, (1996). https://doi.org/10.1016/S0294-1449(16)30113-5
L. Boccardo, T. Gallou¨et , Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169. https://doi.org/10.1016/0022-1236(89)90005-0
Boccardo, L. Murat, F. Puel, J. P., Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl. 152, 183-196, (1988). https://doi.org/10.1007/BF01766148
Carrillo, J., Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147(4), 269-361, (1999). https://doi.org/10.1007/s002050050152
Carrillo, J. and Wittbold, P., Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Differential Equations, 156, 93-121, (1999). https://doi.org/10.1006/jdeq.1998.3597
Carrillo, J. and Wittbold, P., Renormalized entropy solution of a scalar conservation law with boundary condition, J. Differential Equations, 185(1), 137-160, (2002). https://doi.org/10.1006/jdeq.2002.4179
Dal Maso, G. Murat, F. Orsina, L. and Prignet, A., Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28, 741-808, (1999).
Dall'Aglio, A. and Orsina, L., Nonlinear parabolic equations with natural growth conditions and L1 data, Nonlinear Anal., 27, 59-73, (1996). https://doi.org/10.1016/0362-546X(94)00363-M
Di Perna, R. J. and Lions, P. L., On the Cauchy problem for Boltzmann equations : Global existence and weak stability, Ann. Math., 130, pp. 321-366, (1989). https://doi.org/10.2307/1971423
Droniou, J. Prignet, A., Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data, NoDEA Nonlinear Diff. Eq. Appl., 14, 181-205, (2007) https://doi.org/10.1007/s00030-007-5018-z
Maitre, E. Sur une classe d'equations a double non linearite : application a la simulation numerique dun ecoulement visqueux compressible, These Universite Joseph Fourier - Grenoble 1, (1997).
Dall'Aglio, A. Orsina, L., Existence results for some nonlinear parabolic equations with nonregular data, Differential Integral Equations, 5, 1335-1354, (1992).
Fukushima, M. Sato, K. Taniguchi, S., On the closable part of pre-Dirichlet forms and the fine supports of underlying measures, Osaka J. Math., 28, 517-535, (1991).
Lions, J. L., Quelques methodes de resolution des problemes aux limites non lineaire, Dunod et Gauthier-Villars, Paris, (1969).
Landes, R., On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect., A89, 217-237, (1981). https://doi.org/10.1017/S0308210500020242
Murat, F., Soluciones renormalizadas de EDP elipticas non lineales, Technical Report R93023, Laboratoire d'Analyse Numerique, Paris VI, Cours a l'Universite de Seville, (1993).
Murat, F., Equations elliptiques non lin'eaires avec second membre L1 ou mesure, in Compte Rendus du 26 eme Congres d'Analyse Numerique, les Karellis, A12-A24, (1994).
Petitta, F., Asymptotic behavior of solutions for linear parabolic equations with general measure data, C.R. Math. Acad. Sci. Paris 344 , no.9, 571-576, (2007). https://doi.org/10.1016/j.crma.2007.03.021
Petitta, F., Renormalized solutions of nonlinear parabolic equations with general measure data, Ann. Mat. Pura ed Appl., 187 (4) , 563-604, (2008). https://doi.org/10.1007/s10231-007-0057-y
Porretta, A., Existence results for nonlinear parabolic equations via strong convergence of trauncations, Ann. Mat. Pura ed Applicata, 177,1 43-172, (1999). https://doi.org/10.1007/BF02505907
Prignet, A., Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures, Rend. Mat. Appl., (15), 321-337, (1995),
Pierre, M., Parabolic Capacity and Sobolev Spaces, SIAM J. Math Anal. 14, 522-533, (1983). https://doi.org/10.1137/0514044
Prignet, A., Existence and uniqueness of entropy solutions of parabolic problems with L1 data, Nonlinear Anal., 28, 1943-1954, (1997). https://doi.org/10.1016/S0362-546X(96)00030-2
Marah, A. and Redwane, H., Nonlinear parabolic equation with diffuse measure data, J. Nonl. Evol. Equ. Appl., 3, 27-48, (2017).
Droniou, J. Porretta, A. and Prignet, A., Parabolic capacity and soft measure for nonlinear equations, Potential Anal., 19, no.2, 99-161, (2003).
Redwane, H., Existence of a solution for a class of parabolic equations with three unbounded nonlinearities, Adv. Dyn. Syst. Appl., 2 , 241-264, (2007).
Serrin, J., Pathological solution of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18, 385-387, (1964).
Simon, J., Compact sets in L p (0, T; B), Ann. Mat. Pura Appl., 146, 65-96, (1987). https://doi.org/10.1007/BF01762360
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).