Existence and multiplicity of solutions for anisotropic elliptic equation

  • El Amrouss Abdelrachid University Mohamed I
  • Ali El Mahraoui University Mohamed I

Abstract

 In this article we study the nonlinear problem

$$\left\{ \begin{array}{lr}

-\sum_{i=1}^{N}\partial_{x_{i}}a_{i}(x,\partial_{x_{i}}u)+ b(x)~|u|^{P_{+}^{+}-2}u =\lambda f(x,u) \quad in \quad \Omega\\

u=0 \qquad on \qquad \partial\Omega

\end{array} \right.$$

Using the variational method, under appropriate assumptions on $f$, we obtain a result on existence and multiplicity of solutions.

Downloads

Download data is not yet available.

References

G. A. Afrouzi, M. Mirzapour, Vicentiu D. Radulescu, Qualitative Properties of Anisotropic Elliptic Schrodinger Equations, Advanced Nonlinear Studies. 14(2014), 719-736. https://doi.org/10.1515/ans-2014-0312

A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7

G. Bonanno, A minimax inequality and its applications to ordinary differential equations. J. Math. Anal. Appli. 270(2002) 210-219. https://doi.org/10.1016/S0022-247X(02)00068-9

G. Bonanno, P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel) 80 (2003) 424-429. https://doi.org/10.1007/s00013-003-0479-8

M. M. Boureanu, Infinitely many solutions for a class of degenerate anisotropic elliptic problems with variable exponent, Taiwanese Journal of Mathematics 15 (2011), 2291-2310. https://doi.org/10.11650/twjm/1500406435

D. E. Edmunds, J. Rakosnık, Sobolev embedding with variable exponent, Studia Math. 143 (2000), 267-293. https://doi.org/10.4064/sm-143-3-267-293

A. R. El Amrouss, F. Mordi, and M. Moussaoui, Existence of solutions for fourth-order PDEs with variable exponents, Electron. J. Differ. Equ. 2009 (2009), No. 153. pp. 1-13.

I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0

X. L. Fan, Anisotropic variable exponent Sobolev spaces and −→p (x)−Laplacian equations, Complex Var. Elliptic Equ. 56 (7-9) (2011), 623-642. https://doi.org/10.1080/17476931003728412

X. L. Fan, X. Y. Han, Existence and multiplicity of solutions for p(x) − Laplacian equations in RN , Nonlinear Anal. 59 (2004), 173-188. https://doi.org/10.1016/S0362-546X(04)00254-8

X. L. Fan, J. S. Shen, D. Zhao, Sobolev embedding theorems for spaces Wk,p(x) , J. Math. Anal. Appl. 262 (2001), 749-760. https://doi.org/10.1006/jmaa.2001.7618

X. L. Fan, D. Zhao, On the spaces L p(x) and W m,p(x) , J. Math. Anal. Appl. 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617

Q. Liu; Existence of three solutions for p(x)-Laplacian equations, Nonlinear Anal., 68 (2008), pp. 2119-2127. https://doi.org/10.1016/j.na.2007.01.035

C. Ji, Remarks on the existence of three solutions for the p(x) − Laplacian equations, Nonlinear Anal.74 (2011), 2908-2915. https://doi.org/10.1016/j.na.2010.12.013

B. Kone, S. Ouaro, and S. Traore, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electron. J. Differ. Equ. 2009 (2009), 1-11.

M. Mihailescu; Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal., 67 (2007), 1419-1425. https://doi.org/10.1016/j.na.2006.07.027

M. Mihailescu, G. Moro¸sanu, Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions, Applicable Analysis 89 (2010), 257-271. https://doi.org/10.1080/00036810802713826

M. Mihailescu, P. Pucci, V. Rˇadulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687-698. https://doi.org/10.1016/j.jmaa.2007.09.015

B. Ricceri, A three critical points theorem revisited. Nonlinear Anal. 70 (2009) 3084-3089. https://doi.org/10.1016/j.na.2008.04.010

B. Ricceri, On three critical points theorem, Arch. Math. (Basel) 75 (2000), 220-226. https://doi.org/10.1007/s000130050496

X. Shi, X. Ding; Existence and multiplicity of solutions for a general p(x)-Laplacian Neumann problem, Nonlinear Anal., 70 (2009), 3715-3720. https://doi.org/10.1016/j.na.2008.07.027

M. Willem, Minimax Theorems, Birkhauser, Boston, 1996. https://doi.org/10.1007/978-1-4612-4146-1

Published
2021-12-20
Section
Articles