A multiplicity result to Schr\"{o}dinger Equation with singular points

  • Ghasem A. Afrouzi University of Mazandaran Babolsar
  • Somayeh Khademloo University of Technology Babol
  • Karime B. Ardeshiri University of Mazandaran Babolsar

Abstract

In this paper, using variational method, we study the existence and mutiplicity of the solutions for the following multi-singular critical elliptic problem 
\begin{eqnarray*}
\begin{cases}\begin{array}{cc}
-\Delta{u}-\displaystyle
\sum_{i=1}^k\frac{\mu_i}{|x-a_i|^2}u=f_\lambda \left( x,u \right)
& x \in{\Omega{\backslash}}\{a_1,...,a_k\},\\
u(x)>0 & x \in{\Omega}{\backslash}\{a_1,...,a_k \},\\
u(x)=0 &x \in{\partial{\Omega}}.
\end{array}
\end{cases}
\end{eqnarray*}
where $\Omega{\subset}\mathbb{R}^N(N\geq3)$ is a smooth bounded
domain such that $a_i\in{\Omega},i=1,2,...,k,$ for $k\geq2$ are
different points, $0\leq{\mu_i} \in \mathbb{R}$.
In this class of nonlinear elliptic Dirichlet boundary value problems the combination effects of a sublinear and a superlinear term allow us to establish some existence and multiplicity results.

Downloads

Download data is not yet available.

References

A. Ambrosetti, M. Badiale, The dual variational principle and elliptic problems with discontinuous nonlinearities, J. Math. Anal. Appl. 140 (1989) 363-373. https://doi.org/10.1016/0022-247X(89)90070-X

A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994) 519-543. https://doi.org/10.1006/jfan.1994.1078

A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and aplications, J. Funct. Anal. 14 (1973) 349-381. https://doi.org/10.1016/0022-1236(73)90051-7

J. P. Garcia Azorero , I. Peral Alonso, inequalities and some critical elliptic and parabolic problems, J. Differential Equations. 144 (1998) 441-476. https://doi.org/10.1006/jdeq.1997.3375

T. Bartsch, A. Pankov, and Z-Q. Wang, Nonlinear Schr¨odinger equations with steep potential wellCommun. Contemp. Math, 3(2001) 549-569. https://doi.org/10.1142/S0219199701000494

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on RN , Comm. Partial Differential Equations, 20(1995)1725-1741. https://doi.org/10.1080/03605309508821149

H. Brezis, T. Kato, Remarks on the Schrodinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979) 137-151.

H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983)486-490. https://doi.org/10.1090/S0002-9939-1983-0699419-3

H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Apple. Math. 36 (1983) 437-478. https://doi.org/10.1002/cpa.3160360405

J. Byeon, Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrodinger equations, Arch. Ration. Mech. Anal. 165(4)(2002) 295-316. https://doi.org/10.1007/s00205-002-0225-6

D. Cao, P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Differential Equations. 205 (2004) 521-537. https://doi.org/10.1016/j.jde.2004.03.005

D. Cao, P. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials, Differential Equations. 224 (2006) 332-372. https://doi.org/10.1016/j.jde.2005.07.010

D. Cao, E. S. Noussair, and S. Yan, Multiscale-bump standing waves with a critical frequency for nonlinear Schrodinger equations, Trans. Amer. Math. Soc, 360(2008) 3813-3837. https://doi.org/10.1090/S0002-9947-08-04348-1

D. Cao, S. Peng, A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Differential Equations 193 (2003) 424-434. https://doi.org/10.1016/S0022-0396(03)00118-9

F. Catrina, Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of external functions, Comm. Pure Appl. Math. 54 (2001) 229-258. https://doi.org/10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I

J. Chen, Multiple positive solutions for a class of nonlinear elliptic equations, J. Math. Anal. Appl. 295 (2004) 341-354. https://doi.org/10.1016/j.jmaa.2004.01.037

E. Egnell, Elliptic boundary value problems with singular coefficients and critical nonlinearities, Indiana Univ. Math. J. 38 (1989) 235-251. https://doi.org/10.1512/iumj.1989.38.38012

I. Ekeland, N. Ghoussoub, Selected new aspects of the calculus of variations in the large, Bull. Amer. Math.Soc. 39 (2002) 207-265. https://doi.org/10.1090/S0273-0979-02-00929-1

V. Felli, E. M. Marchini, S. Terracini, On Schrodinger Operators with Multi-singular Inverse-square Anisotropic Potentials Indiana University Mathematics Journal.58. 2 (2009) 617-676. https://doi.org/10.1512/iumj.2009.58.3471

A. Ferrero, F. Gazzola, Existence of solutions for singular critical growth semi linear elliptic equations, J. Differential Equations . 177 (2001) 494-522. https://doi.org/10.1006/jdeq.2000.3999

V. Benci and D. Fortunato, Discreteness conditions of the spectrum of Schr¨odinger operators, J. Math. Anal. Appl, 64(3)(1978) 695-700. https://doi.org/10.1016/0022-247X(78)90013-6

N. Ghoussoub, D. Preiss, A general Mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincare' Anal. Non Line'aire. 6 (1989) 321-330. https://doi.org/10.1016/s0294-1449(16)30313-4

N. Ghoussoub, C. Yuan, Multiple solutions for quasilinear PDEs involving critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000) 5703-5743. https://doi.org/10.1090/S0002-9947-00-02560-5

T. S. Hsu, Multiple positive solutions for semilinear elliptic equations involving multi-singular inverse square potentials and concave-convex nonlinearities, Nonlin. Anal. 74 (2011) 3703-3715. https://doi.org/10.1016/j.na.2011.03.016

E. Jannelli, The role played by space dimension in elliptic critical problems, J. Differential Equations. 156 (1999) 407-426. https://doi.org/10.1006/jdeq.1998.3589

A. Kristaly. Multiple solutions of a sublinear Schrodinger equation, NoDEA Nonlinear Differential Equations Appl.14(3-4) (2007) 291-301. https://doi.org/10.1007/s00030-007-5032-1

P. L. Lions, The concentration-compactness principle in the calculus of variations: the limit case, Rev. Mat. Iberoamericana. 1 (1985) 145-201 45-121. https://doi.org/10.4171/RMI/6

L. Wei, Exact behavior of positive solutions to elliptic equations with multi-singular inverse square potentials, Discrete and continuous dynamical systems. 36. 12(2016) 7169-7189. https://doi.org/10.3934/dcds.2016112

P. H. Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys. 43(1992)270-291. https://doi.org/10.1007/BF00946631

D. Ruiz, M. Willem, Elliptic problems with critical exponents and Hardy potentials, J. Differential Equations. 190 (2003) 524-538. https://doi.org/10.1016/S0022-0396(02)00178-X

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55(2)(1977)149-162. https://doi.org/10.1007/BF01626517

P. N. Srikanth, Uniqueness of solutions of ninlinear Dirichlet problems, Differential Integral Equations .6 (1993) 663-670.

M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhauser Boston, Inc., Boston, MA(1996).

Published
2022-01-26
Section
Articles