Willmore function on curvatures of the curve-surface pair under mobius transformation
Abstract
We find a geometric invariant of the curve-surface pairs on Willmore functions with the mean and Gauss curvatures. Similar to the work in [5,19], in this work, we define Willmore functions on curve--surface pair and give new characterizations about Willmore functions with necessary and sufficient condition with strip theory in Euclidean 3-space for the first time. In this paper Willmore function on curvatures of the curve-surface pair under Möbiüs transformation is provided invariant.
Downloads
References
A. Beardon, The Geometry Discrete Groups Springer-Verlag, 9-81p., Berlin 1983. https://doi.org/10.1007/978-1-4612-1146-4_2
W. Blaschke, "Vorlesungen Uber Differential Geometrie I" Band I, Verlag Von Julius Springer in Berlin, 1945.
W. Blaschke, "Vorlesungen Uber Differentialgeometrie III: Differentialgeometrie der Kreise und Kugeln", Grundlehren XXIX, Springer in Berlin 1929.
A. D. Brannon, M. F. Esplen, J. J. Gray,1999. Geometry. Cambridge University, Australia. https://doi.org/10.1017/CBO9780511807503
Udo Hertrich-Jeromin, Introduction to Mobius differential Geomery, (London mathematical Society lecture Notes series, vol.300, Cambridge University Press, UK) Bulletin (New Series) of the American Mathematical Society, Volume 42, Number 4, Pages 549-554, 2003.
H. Hilmi Hacısalihog, Differential Geometry, Ankara Uni. Science Fac. Pub., Volume I-II. Ankara, Turkiye, 1993.
H. Hilmi Hacısalihog, "On The Relations Between The Higher Curvatures Of A Curve and A Strip", Communications de la Facult'e des Sciences de Universit'e d'Ankara Serie A1, Tome 31, 1982. https://doi.org/10.1501/Commua1_0000000114
H. Gluck, 1966. "Higher Curvatures of Curves in Eucliden Space", Amer. Math. Montly. 73, pp: 699-704. https://doi.org/10.1080/00029890.1966.11970818
N. Y. Ozgur, "Elipses and Harmonic Mobius Transformations", N a. St. niv. Ovidius Constanta, Vol 18 (2), 2010, 201-208.
Filiz Ertem Kaya, Yusuf Yaylı, H. Hilmi Hacısalihoglu, 'Harmonic Curvature of a Strip in E3 ', Commun. Fac. Sci. Univ. Ank. Series A1, Volume 59, Number 2, Pages 1-14 , ISSN 1303-5991. DOI 10.1501Commua1 0000000659, 2010.
Filiz Ertem Kaya, Y. Yaylı, H. Hilmi Hacısalihoglu, A characterization of cylindrical helix strip in ', Commun. Fac. Sci. Univ. Ank. Series A1, Volume 59, Number 1, Pages 37-51, ISSN 1303-5991. DOI 10.1501Commua1 0000000655, 2010.
Filiz Ertem Kaya, Y. Yaylı, H. Hilmi Hacısalihoglu, The Conical Helix Strip in , Int. J. Pure Appl. Math. Volume 66, No(2), Pages 145-156, 2011.
Filiz Ertem Kaya, Harmonic curvature of the curve-surface pair under Mobius Transformation', International Journal of Physical Sciences, Vol. 8(7), June, 2013, DOI: 10.5897/IJPS2013.3933, ISSN 1992-1950 Academic Journals, c 2013.
Filiz Ertem Kaya, Terquem Theorem with the Spherical helix Strip', Pure and Applied Mathematics Journal, Applications of Geometry, Vol. 4, Issue Number 1-2, Science Publishing Group,ISSN Print: 2326-9790 ISSN Online: 2326-9812, January 2015. https://doi.org/10.11648/j.pamj.s.2015040102.11
Filiz Ertem Kaya, On involute and evolute of the Curve and Curve-Surface Pair in Eucledean 3-Space', Pure and Applied Mathematics Journal, Applications of Geometry, Vol. 4, Issue Number 1-2, pp:6-9, Science Publishing Group, January 2015. https://doi.org/10.11648/j.pamj.s.2015040102.11
Filiz Ertem Kaya, A Special Characterization for Joachimsthal and Terquem Type Theorems, International Journal of science and Engineering Investigations, Vol. 6, Issue 61, , pp. 126-131, Paper ID: 66117-17, ISSN: 2251-8843 February 2017.
Filiz Ertem Kaya, Finding Energy of the Slant Helix Strip by Using Classic Energy Methods on Joachimsthal Theorem, Pure and Applied Mathematics Journal. Special Issue:Advanced Mathematics and Geometry. Vol. 6, No. 3-1" pp. 1-5. Science Publishing Group, doi: 10.11648/j.pamj.s.2017060301.11, 2017.
Filiz Ertem Kaya, Y. Yaylı, Developable Curve-Surface Pair and Spherical Representations By Bishop Frame', Appl. Comput. Math. An International Journal, V.16, N.3, , pp.228-239, Z. Khalilov 23, AZ1148, Baku, Azerbaijan, 2017.
T. J. Willmore, Note on embedded surfaces, An. Sti. Univ. Al. I. Cusa Iasi, N. Ser., Sect. Ia Mat. 11B, 493-496. MR0202066 (34:1940) 1965.
T. E. Cecil, Introduction to Mobius Differential Geometry , Bulletin (New Series) of the American mathematical Society, Volume 42, BNumber 4, Pages 549-554.on July 1, 2005. https://doi.org/10.1090/S0273-0979-05-01067-0
G. Fubini, Applicabilita projettiva di due sperficie, Palermo Rend. 41, 135-162, 1916. https://doi.org/10.1007/BF03018291
G. Thomsen, UberkonformeGeometrieI:GrundlagenderkonformenFl achentheorie, Hamb. Math. Abh. 3, 31-56, 1923.
J. H. White, A Global invariant of conformal mapping in space, Proc. Amer. Math. Soc. 38, 162-164, 1973. https://doi.org/10.1090/S0002-9939-1973-0324603-1
N. Y. Ozgur, C. Ozgur and S. Bulut, On the Images of the Helix under the Mobius Transformations, Non Linear Funct. Anal. Appl. 10 (5), 743-749, 2005.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).