Willmore function on curvatures of the curve-surface pair under mobius transformation

Abstract

We find a geometric invariant of the curve-surface pairs on Willmore functions with the mean and Gauss curvatures. Similar to the work in [5,19], in this work, we define Willmore functions on curve--surface pair and give new characterizations about Willmore functions with necessary and sufficient condition with strip theory in Euclidean 3-space for the first time. In this paper Willmore function on curvatures of the curve-surface pair under Möbiüs transformation is provided invariant.

Downloads

Download data is not yet available.

References

A. Beardon, The Geometry Discrete Groups Springer-Verlag, 9-81p., Berlin 1983. https://doi.org/10.1007/978-1-4612-1146-4_2

W. Blaschke, "Vorlesungen Uber Differential Geometrie I" Band I, Verlag Von Julius Springer in Berlin, 1945.

W. Blaschke, "Vorlesungen Uber Differentialgeometrie III: Differentialgeometrie der Kreise und Kugeln", Grundlehren XXIX, Springer in Berlin 1929.

A. D. Brannon, M. F. Esplen, J. J. Gray,1999. Geometry. Cambridge University, Australia. https://doi.org/10.1017/CBO9780511807503

Udo Hertrich-Jeromin, Introduction to Mobius differential Geomery, (London mathematical Society lecture Notes series, vol.300, Cambridge University Press, UK) Bulletin (New Series) of the American Mathematical Society, Volume 42, Number 4, Pages 549-554, 2003.

H. Hilmi Hacısalihog, Differential Geometry, Ankara Uni. Science Fac. Pub., Volume I-II. Ankara, Turkiye, 1993.

H. Hilmi Hacısalihog, "On The Relations Between The Higher Curvatures Of A Curve and A Strip", Communications de la Facult'e des Sciences de Universit'e d'Ankara Serie A1, Tome 31, 1982. https://doi.org/10.1501/Commua1_0000000114

H. Gluck, 1966. "Higher Curvatures of Curves in Eucliden Space", Amer. Math. Montly. 73, pp: 699-704. https://doi.org/10.1080/00029890.1966.11970818

N. Y. Ozgur, "Elipses and Harmonic Mobius Transformations", N a. St. niv. Ovidius Constanta, Vol 18 (2), 2010, 201-208.

Filiz Ertem Kaya, Yusuf Yaylı, H. Hilmi Hacısalihoglu, 'Harmonic Curvature of a Strip in E3 ', Commun. Fac. Sci. Univ. Ank. Series A1, Volume 59, Number 2, Pages 1-14 , ISSN 1303-5991. DOI 10.1501Commua1 0000000659, 2010.

Filiz Ertem Kaya, Y. Yaylı, H. Hilmi Hacısalihoglu, A characterization of cylindrical helix strip in ', Commun. Fac. Sci. Univ. Ank. Series A1, Volume 59, Number 1, Pages 37-51, ISSN 1303-5991. DOI 10.1501Commua1 0000000655, 2010.

Filiz Ertem Kaya, Y. Yaylı, H. Hilmi Hacısalihoglu, The Conical Helix Strip in , Int. J. Pure Appl. Math. Volume 66, No(2), Pages 145-156, 2011.

Filiz Ertem Kaya, Harmonic curvature of the curve-surface pair under Mobius Transformation', International Journal of Physical Sciences, Vol. 8(7), June, 2013, DOI: 10.5897/IJPS2013.3933, ISSN 1992-1950 Academic Journals, c 2013.

Filiz Ertem Kaya, Terquem Theorem with the Spherical helix Strip', Pure and Applied Mathematics Journal, Applications of Geometry, Vol. 4, Issue Number 1-2, Science Publishing Group,ISSN Print: 2326-9790 ISSN Online: 2326-9812, January 2015. https://doi.org/10.11648/j.pamj.s.2015040102.11

Filiz Ertem Kaya, On involute and evolute of the Curve and Curve-Surface Pair in Eucledean 3-Space', Pure and Applied Mathematics Journal, Applications of Geometry, Vol. 4, Issue Number 1-2, pp:6-9, Science Publishing Group, January 2015. https://doi.org/10.11648/j.pamj.s.2015040102.11

Filiz Ertem Kaya, A Special Characterization for Joachimsthal and Terquem Type Theorems, International Journal of science and Engineering Investigations, Vol. 6, Issue 61, , pp. 126-131, Paper ID: 66117-17, ISSN: 2251-8843 February 2017.

Filiz Ertem Kaya, Finding Energy of the Slant Helix Strip by Using Classic Energy Methods on Joachimsthal Theorem, Pure and Applied Mathematics Journal. Special Issue:Advanced Mathematics and Geometry. Vol. 6, No. 3-1" pp. 1-5. Science Publishing Group, doi: 10.11648/j.pamj.s.2017060301.11, 2017.

Filiz Ertem Kaya, Y. Yaylı, Developable Curve-Surface Pair and Spherical Representations By Bishop Frame', Appl. Comput. Math. An International Journal, V.16, N.3, , pp.228-239, Z. Khalilov 23, AZ1148, Baku, Azerbaijan, 2017.

T. J. Willmore, Note on embedded surfaces, An. Sti. Univ. Al. I. Cusa Iasi, N. Ser., Sect. Ia Mat. 11B, 493-496. MR0202066 (34:1940) 1965.

T. E. Cecil, Introduction to Mobius Differential Geometry , Bulletin (New Series) of the American mathematical Society, Volume 42, BNumber 4, Pages 549-554.on July 1, 2005. https://doi.org/10.1090/S0273-0979-05-01067-0

G. Fubini, Applicabilita projettiva di due sperficie, Palermo Rend. 41, 135-162, 1916. https://doi.org/10.1007/BF03018291

G. Thomsen, UberkonformeGeometrieI:GrundlagenderkonformenFl achentheorie, Hamb. Math. Abh. 3, 31-56, 1923.

J. H. White, A Global invariant of conformal mapping in space, Proc. Amer. Math. Soc. 38, 162-164, 1973. https://doi.org/10.1090/S0002-9939-1973-0324603-1

N. Y. Ozgur, C. Ozgur and S. Bulut, On the Images of the Helix under the Mobius Transformations, Non Linear Funct. Anal. Appl. 10 (5), 743-749, 2005.

Published
2022-01-31
Section
Articles

Funding data