Infinitely many solutions for a class of fractional boundary value problem with $p$-Laplacian with impulsive effects
Abstract
The existence of infinitely many solutions for a class of impulsive fractional boundary value problems with $p$-Laplacian with Neumann conditions is established. Our approach is based on recent variational methods for smooth functionals defined on reflexive Banach spaces. One example is presented to demonstrate the application of our main results.
Downloads
References
Bai, C., Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem, Electron. J. Differ. Equ. 2013, 1-12, (2013).
Bai, Z., Qiu, Z., Existence of positive solution for singular fractional differential equation, Appl. Math. Comput. 215, 2761-2767, (2009). https://doi.org/10.1016/j.amc.2009.09.017
Benson, D., Wheatcraft, S., Meerschaert, M., Application of a fractional advection dispersion equation, Water Resour. Res. 36, 1403-1412, (2000). https://doi.org/10.1029/2000WR900031
Benson, D., Wheatcraft, S., Meerschaert, M., The fractional-order governing equation of L'evy motion, Water Resour. Res. 36, 1413-1423, (2000). https://doi.org/10.1029/2000WR900032
Bonanno, G., Candito, P., Nonlinear difference equations investigated via critical point methods, Nonlinear Anal. TMA 70, 3180-3186, (2009). https://doi.org/10.1016/j.na.2008.04.021
Bonanno, G., D'Agu'ı, G., Multiplicity results for a perturbed elliptic Neumann problem, Abstr. Appl. Anal. 2010, doi:10.1155/2010/564363, 10 pages, (2010). https://doi.org/10.1155/2010/564363
Bonanno, G., Molica Bisci, G., A remark on perturbed elliptic Neumann problems, Studia Univ. "Babe¸s-Bolyai", Mathematica, Volume LV, Number 4, December (2010).
Bonanno, G., Molica Bisci, G., Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009, 1-20, (2009). https://doi.org/10.1155/2009/670675
G. D'Agu'ı, G., Heidarkhani, S., Sciammetta, A., Infinitely many solutions for a class of quasilinear two-point boundary value problems, Electron. J. Qualitative Theory of Differential Equations 2015, No. 8, 1-15. https://doi.org/10.14232/ejqtde.2015.1.8
P. Candito, P., D'Agu'ı, G., Three solutions for a discrete nonlinear Neumann problem involving the p-Laplacian, Adv. Differ. Equ. 2010, 1-11, (2010). https://doi.org/10.1155/2010/862016
K. Diethelm, K., The Analysis of Fractional Differential Equation, Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14574-2_8
J. Eggleston, J. Rojstaczer, S., Identification of large-scale hydraulic conductivity trends and the influence of trends on contaminant transport, Water Resources Researces 34, 2155-2168, (1998). https://doi.org/10.1029/98WR01475
F. Faraci, F., Multiple solutions for two nonlinear problems involving the p-Laplacian, Nonlinear Anal. TMA 63, e1017-e1029, (2005). https://doi.org/10.1016/j.na.2005.02.066
M. Galewski, M., Molica Bisci, G., Existence results for one-dimensional fractional equations, Math. Meth. Appl. Sci., 39, 1480-1492, (2016). https://doi.org/10.1002/mma.3582
Graef, J.R., Heidarkhani, S., Kong, L., Infinitely many solutions for problems of multi-point boundary value equations, Topol. Meth. Nonl. Anal. 42, 105-118.
Graef, J.R., Kong, L., Yang, B., Positive solutions for a semipositone fractional boundary value problem with a forcing term, Fract. Calc. Appl. Anal. 15, 8-24, (2012). https://doi.org/10.2478/s13540-012-0002-7
Heidarkhani, S.,Multiple solutions for a nonlinear perturbed fractional boundary value problem, Dynamic. Sys. Appl. 23., 317-331, (2014).
Heidarkhani, S., Henderson, J., Infinitely many solutions for nonlocal elliptic problems of (p1, . . . , pn)-Kirchhoff type, Electron. J. Differential Equations 2012, 1-15, 69.
Heidarkhani, S., Moradi, S., Existence results for impulsive fractional differential equations with p-Laplacian via variational methods, preprint.
Graef, J.R., Heidarkhani, Kong, L., S., Moradi, S., Existence results for impulsive fractional differential equations with p-Laplacian via variational methods, Mathematica Bohemica, to appear. .
Graef, J.R., Heidarkhani, Kong, L., S., Moradi, S., Three solutions for impulsive fractional boundary value problem with p-Laplacian, Bull. Iran. Math. Soc. (2021). https://doi.org/10.1007/s41980-021-00589-5
Heidarkhani, S., Salari, S., Nontrivial solutions for impulsive fractional differential problems through variational methods, Mathematical Methods in the Applied Sciences 43, 6529-6541, (2020). https://doi.org/10.1002/mma.6396
S. Heidarkhani, S., Zhao, Y., Caristi, G., Afrouzi, G.A., Moradi, S., Infinitely many solutions for perturbed impulsive fractional differential problems, Appl. Anal. 96, 1401-1424, (2017). https://doi.org/10.1080/00036811.2016.1192147
Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000). https://doi.org/10.1142/3779
Jiao, F., Zhou, Y., Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl. 62, 1181-1199, (2011). https://doi.org/10.1016/j.camwa.2011.03.086
Jing, W.X., Huang, X., Guo, W., Zhang, Q., The existence of positive solutions for the singular fractional differential equation, Appl. Math. Comput. 41, 171-182, (2013). https://doi.org/10.1007/s12190-012-0603-7
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam (2006).
Kong, L., Existence of solutions to boundary value problems arising from the fractional advection dispersion equation, Electron. J. Diff. Equ., Vol. 2013, 1-15, (2013).
Lakshmikantham, V., Bainov, D.D., Simeonov, P.S., Theory of Impulsive Differential Equations, vol. 6 of Series in Modern Applied Mathematics, World Scientifc, Teaneck, NJ, USA, (1989). https://doi.org/10.1142/0906
Li, W., He, Z.,The applications of sums of ranges of accretive operators to nonlinear equations involving the p-Laplacian operator, Nonlinear Anal. TMA 24, 185-193, (1995). https://doi.org/10.1016/0362-546X(94)E0051-H
Ricceri, B., A general variational principle and some of its applications, J. Comput. Appl. Math. 113, 401-410, (2000). https://doi.org/10.1016/S0377-0427(99)00269-1
Risken, H., The Fokker-Planck Equation, Springer, Berlin, (1988). https://doi.org/10.1007/978-3-642-61544-3
Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, Longhorne, PA, (1993).
Samoilenko, A.M., Perestyuk, N.A., Impulsive Differerential Equations, vol. 14 of World Scientifc Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientifc, River Edge, NJ, USA, (1995). https://doi.org/10.1142/2892
Wang, J., Li, X., Wei, W., On the natural solution of an impulsive fractional differential equation of order q ∈ (1, 2), Commun. Nonlinear Sci. Numer. Simul. 17, 4384-4394, (2012). https://doi.org/10.1016/j.cnsns.2012.03.011
Wang, Y., Liu, Y., Cui, Y., Infinitely many solutions for impulsive fractional boundary value problem with p-Laplacian, Bound. Value Prob. 2018, 1-16, (2018). https://doi.org/10.1186/s13661-018-1012-0
Zhang, Y., Liu, L., Wu, Y., Variational structure and multiple solutions for a fractional advection-dispersion equation, Comput. Math. Appl. 61, 1032-1047, (2011).
Zhao, Y., Tang, L., Multiplicity results for impulsive fractional differential equations with p-Laplacian via variational methods, Bound. Value Probl. 2017, 1-15, (2017). https://doi.org/10.1186/s13661-017-0855-0
Y. Zhou, Y., Basic Theory of Fractional Differential Equations, World Scientific, Singapore (2014). https://doi.org/10.1142/9069
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).