Characterization of spherical and plane curves using rotation minimizing frames
Abstract
In this work, we study plane and spherical curves in Euclidean and Lorentz-Minkowski 3-spaces by employing rotation minimizing (RM) frames. By conveniently writing the curvature and torsion for a curve on a sphere, we show how to find the angle between the principal normal and an RM vector field for spherical curves. Later, we characterize plane and spherical curves as curves whose position vector lies, up to a translation, on a moving plane spanned by their unit tangent and an RM vector field. Finally, as an application, we characterize Bertrand curves as curves whose so-called natural mates are spherical.
Downloads
References
Bishop, R. L., There is more than one way to frame a curve, Am. Math. Mon. 82, 246-251 (1975). https://doi.org/10.1080/00029890.1975.11993807 DOI: https://doi.org/10.1080/00029890.1975.11993807
Chen, B. Y., When does the position vector of a space curve always lie in its rectifying plane?, Am. Math. Mon. 110, 147-152 (2003). https://doi.org/10.1080/00029890.2003.11919949 DOI: https://doi.org/10.1080/00029890.2003.11919949
Chen, B. Y., Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math. 48, 209-214 (2017). https://doi.org/10.5556/j.tkjm.48.2017.2382 DOI: https://doi.org/10.5556/j.tkjm.48.2017.2382
Choi, J. H., Kim, Y. H., Ali, A. T., Some associated curves of Frenet non-lightlike curves in E 3 1 , J. Math. Anal. Appl. 394, 712-723 (2012). https://doi.org/10.1016/j.jmaa.2012.04.063 DOI: https://doi.org/10.1016/j.jmaa.2012.04.063
da Silva, L. C. B., Rotation minimizing frames and spherical curves in simply isotropic and pseudo-isotropic 3-spaces, Tamkang J. Math. 51, 31-52 (2020). https://doi.org/10.5556/j.tkjm.51.2020.2960 DOI: https://doi.org/10.5556/j.tkjm.51.2020.2960
da Silva, L. C. B., Moving frames and the characterization of curves that lie on a surface, J. Geom. 108, 1091-1113 (2017). https://doi.org/10.1007/s00022-017-0398-7 DOI: https://doi.org/10.1007/s00022-017-0398-7
Deshmukh, S., Chen, B. Y., Alghanemi, A., Natural mates of Frenet curves in Euclidean 3-space, Turk. J. Math. 42, 2826-2840 (2018). https://doi.org/10.3906/mat-1712-34 DOI: https://doi.org/10.3906/mat-1712-34
Guggenheimer, H. W., Computing frames along a trajectory, Comput. Aided Geom. Des. 6, 77-78 (1989). https://doi.org/10.1016/0167-8396(89)90008-3 DOI: https://doi.org/10.1016/0167-8396(89)90008-3
Honda, A., Fundamental theorem of spacelike curves in Lorentz-Minkowski space, e-print arXiv:1905.03367.
Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turk. J. Math. 28, 153-163 (2004).
Klok, F., Two moving coordinate frames for sweeping along a 3D trajectory, Comput. Aided Geom. Des. 3, 217-229 (1986). https://doi.org/10.1016/0167-8396(86)90039-7 DOI: https://doi.org/10.1016/0167-8396(86)90039-7
Kreyszig, E., Differential Geometry, Dover, New York (1991).
Kuhnel, W., Differentialgeometrie: Kurven - Flachen - Mannigfaltigkeiten 5. Auflage, Vieweg+Teubner (2010).
Lopez, R., Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom. 7, 44-107 (2014). https://doi.org/10.36890/iejg.594497 DOI: https://doi.org/10.36890/iejg.594497
Ozdemir, M., Ergin, A. A., Parallel frames of non-lightlike curves, Missouri J. Math. Sci. 20, 127-137 (2008). https://doi.org/10.35834/mjms/1316032813 DOI: https://doi.org/10.35834/mjms/1316032813
Saban, G., Nuove caratterizzazioni della sfera, Atti. Accad. Naz. Lin. 25, 457-464 (1958).
Wang, W., Juttler, B., Zheng, D., Liu, Y., Computation of rotation minimizing frames, ACM Trans. Graph. 27, Article 2 (2008). https://doi.org/10.1145/1330511.1330513 DOI: https://doi.org/10.1145/1330511.1330513
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).